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Neural network control
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Success stories in robotics
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[Kalashnikov et al., ‘18] [Youssef et al., ‘20] [Kaufmann et al., ‘23]

= Flexibility of NN controllers, optimization of complex costs

= Safety and stability guarantees for general NL systems
= Model-based: [Richards et al., ‘18], [Chang et al., ‘“19], [Dawson et al., ‘23], ...
= Data-driven: [Berkenkamp et al., ‘“17], [Recht, ‘18], [Jin & Lavaei, 18], ...
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Common scenario in engineering
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Frequent availability of

=  System models
=  Simple stabilizing controllers around an equilibrium or a reference
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EPFL Common scenario in engineering

Frequent availability of

=  System models
=  Simple stabilizing controllers around an equilibrium or a reference
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Example: Modular “origami” robotl'l

= Triangular modules that change shape and rotate around joints i \M‘/ j

= Polygonal meshes for several functions
Distributed PID control

4x speed p 4x speed

B ECC24 Workshop

[1] Belke, C.H., et al. "Morphological flexibility in robotic systems through physical polygon meshing." Nature Machine Intelligence, 2023
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Common scenario in engineering

i ——

Frequent availability of

=  System models
=  Simple stabilizing controllers around an equilibrium or a reference

Improve performance without compromising stability?
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EPFL Performance boosting

System
= Nonlinear, interconnected, stable/pre-stabilized
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Performance boosting

System
= Nonlinear, interconnected, stable/pre-stabilized

Performance-boosting controller u X

= Stability-preserving, distributed,
optimizing complex costs
= Performance = task execution, safety, Nonlinear Optimal Control (NOC)
robustness, ... A
K(-) € argmin ?EW [L(X0:7, Uo:T)]

s.t. CLOSED-LOOP STABILITY
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Performance boosting

System
= Nonlinear, interconnected, stable/pre-stabilized

Performance-boosting controller

= Stability-preserving, distributed,
optimizing complex costs

= Performance = task execution, safety,
robustness, ...

Goals
= Leverage NNs flexibility
= Harness open-loop stability for control design

Nonlinear Optimal Control (NOC)
1
K(-) € argmin FEw [L(Xo:7, Uo:7)]

s.t. CLOSED-LOOP STABILITY
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Part 1 (Gianni): Design of performance-boosting policies
= Parametrization of all stabilizing controllers
= NN models of stable operators
= Solving NOC through NN training

Part 2 (Luca): Extensions for real-world deployment

= Tackling the remaining challenges
= Uncertain models, output feedback, distributed...

= Lessons from RL: how to shape your cost function
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Setup and notation
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Time-varying, nonlinear, controlled system

Xt = f(Xt—1, Ut—1) + Wy
ur = Ki(Xro)
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Setup and notation

e T SRl S R

Time-varying, nonlinear, controlled system

Xt = f(Xt—1, Ut—1) + Wy
us = }(t(xt:o) \

\ Process noise

Dynamic controller
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Setup and notation

Time-varying, nonlinear, controlled system

Operator model

X = f(Xi—1, Ui—1) + W; K(x) = (Ko(Xo), K1(X1:0), ---) X =F(x,u)+w
—
ur = Ki(Xt0) X = (X0, Xi, ... u = K(x)
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Setup and notation

G . e i

Time-varying, nonlinear, controlled system
Operator model

X = f(Xi—1, Ui—1) + W; K(x) = (Ko(Xo), K1(X1:0), ---) x=F(x,u)+w
—
ur = Ki(Xt0) X = (X0, Xi, ... u = K(x)

LTl system: x; = Ax;_1 + Bu;_1 + w;

X0 O 0 0 - Xo O 0 0 - Up Xo
Xq A 0 0 - Xq B 0 0 - U1 Wi
Xo - 10 A0 - Xo + O B 0 - U + Wo
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Setup and notation

Time-varying, nonlinear, controlled system
Operator model
X = f(Xi—1, Ui—1) + W; K(x) = (Ko(Xo), K1(X1:0), ---) X =F(x,u)+w
————————————————
ur = Ki(Xt0) X = (X0, Xi, ... u = K(x)
Lo-stability
= A is a stable operator if it is causal and A(x) € /», VX € 62(
— For short: A € £, TS xelpif YO8 IxP < o0
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Setup and notation

Time-varying, nonlinear, controlled system
Operator model
X = f(Xi—1, Ui—1) + W; K(x) = (Ko(Xo), K1(X1:0), ---) X =F(x,u)+w
————————————————
ur = Ki(Xt0) X = (X0, Xi, ... u = K(x)
Lo-stability
= A is a stable operator if it is causal and A(x) € /», VX € 62(
— For short: A € £, TS xelpif YO8 IxP < o0

Closed-loop (CL) stability: the operators w — X
and w — u are stable

118N "7 %9 8)ed8l| Lelsd ‘9



=pr.Parametrization of all stabilizing controllers!!

w

E .| F(x,u)

B ECC24 Workshop

[1] L. Furieri, C. L. Galimberti, and GFT, “Neural System Level Synthesis: Learning over All Stabilizing Policies for Nonlinear Systems,” IEEE CDC 2022
[2] L. Furieri, C. L. Galimberti, and GFT, “Learning to Boost the Performance of Stable Nonlinear Systems,” ArXiv 2024
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=pr.Parametrization of all stabilizing controllers!!
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= T e ——

w

Free L, operator

[1] L. Furieri, C. L. Galimberti, and GFT, “Neural System Level Synthesis: Learning over All Stabilizing Policies for Nonlinear Systems,” IEEE CDC 2022
[2] L. Furieri, C. L. Galimberti, and GFT, “Learning to Boost the Performance of Stable Nonlinear Systems,” ArXiv 2024

118N "7 %9 8)ed8l| Lelsd ‘9



B ECC24 Workshop

Parametrization of all stabilizing controllers!'

w

E .| F(x,u)

Main result

If the open-loop system is stable
(=) If M(:) € L, the CL system is stable

(«=) If there is K’ providing stable CL operators w — x and w — u, then
JM() € L, providing the same CL operators

[1] L. Furieri, C. L. Galimberti, and GFT, “Neural System Level Synthesis: Learning over All Stabilizing Policies for Nonlinear Systems,” IEEE CDC 2022
[2] L. Furieri, C. L. Galimberti, and GFT, “Learning to Boost the Performance of Stable Nonlinear Systems,” ArXiv 2024
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Parametrization of all stabilizing controllers!'

w

| F(x,u)

I -

Main result

If the open-loop system is stable
(=) If M(:) € L, the CL system is stable

(«=) If there is K’ providing stable CL operators w — x and w — u, then
JM() € L, providing the same CL operators

Idea behind (=-): no model mismatch yield w = w, opening the loop

[1] L. Furieri, C. L. Galimberti, and GFT, “Neural System Level Synthesis: Learning over All Stabilizing Policies for Nonlinear Systems,” IEEE CDC 2022
[2] L. Furieri, C. L. Galimberti, and GFT, “Learning to Boost the Performance of Stable Nonlinear Systems,” ArXiv 2024
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IMC and Youla parametrization

F(x, u)

= |nternal Model Controll':2]

%

= Sufficient for stabilityl'l if P=M in the I/O setting, SUR oo P e I AN
also necessary for LTI systems/?] G L ’
= IMC for setpoint tracking [1:2] v Mok

= Problem: C must “invert” the plant [1]

118N "7 %9 8)ed8l| Lelsd ‘9

= Nonlinear Youla parametrizationl(3]

[1] Economou, C. G., M. Morari, and B. O. Palsson. "Internal model control: Extension to nonlinear system." Industrial & Engineering Chemistry Process Design and Development, 1986
[2] Garcia, C. E., and M. Morari. "Internal model control. A unifying review and some new results." Industrial & Engineering Chemistry Process Design and Development, 1982

[3] C.A. Desoer, R.-W. Liu. “Global parametrization of feedback systems with nonlinear plants”, Systems & Control Letters, 1982
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Next question

| F(x,u)

How to implement stable operators? I
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Models of stable operators

L S e e e ——

Finite-dimensional parametrizations of M? € £,

- Linear operators M’ = 3"} % (FIR models)
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Models of stable operators

G . e i ————

Finite-dimensional parametrizations of M? € £,

- Linear operators M’ = 3"} % (FIR models)

= Nonlinear operators?
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Models of stable operators

Finite-dimensional parametrizations of M? € £,
- Linear operators M’ = 3"} % (FIR models)
= Nonlinear operators?

EFFICIENTLY MODELING LONG SEQUENCES WITH
STRUCTURED STATE SPACES

Albert Gu & Karan Goel & Christopher Ré
Department of Computer Science, Stanford University y
{albertgu, krng}@stanford.edu, chrismre@cs.stanford.edu 22

Standard representation and unified stability analysis for dynamic
artificial neural network models
Kwang-Ki K. Kim **, Ernesto Rios Patrén”, Richard D. Braatz

* Department of Electrical Engineering, Inha University, Incheon, Republic of Korea
b petroleum Inst of Mexico, Mexico City, Mexico
€ Massachusetts Institute of Technology, Cambridge, MA, United States

'18, 23

Recurrent Equilibrium Networks:
Flexible Dynamic Models with Guaranteed Stability

and Robustness
Max Revay, Ruigang Wang, Ian R. Manchester ,2 1 ] ‘2 3
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EPFL Models of stable operators

i ———

Finite-dimensional parametrizations of M? € £,
- Linear operators M’ = 3"} % (FIR models)
= Nonlinear operators?

EFFICIENTLY MODELING LONG SEQUENCES WITH
STRUCTURED STATE SPACES

Albert Gu & Karan Goel & Christopher Ré
Department of Computer Science, Stanford University y
{albertgu, krng}@stanford.edu, chrismre@cs.stanford.edu 22

Standard representation and unified stability analysis for dynamic
artificial neural network models
Kwang-Ki K. Kim **, Ernesto Rios Patrén®, Richard D. Braatz

* Department of Electrical Engineering, Inha University, Incheon, Republic of Korea
b petroleum Inst of Mexico, Mexico City, Mexico ) ¢
€ Massachusetts Institute of Technology, Cambridge, MA, United States 1 8 y 23

Recurrent Equilibrium Networks:
Flexible Dynamic Models with Guaranteed Stability

and Robustness
Max Revay, Ruigang Wang, Ian R. Manchester ,2 1 ] ‘23

B ECC24 Workshop
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Recurrent Equilibrium Networks (RENs)!!2

G . e i . + e e

MREN(')

[1] Kim, K. K., E. Rios Patrén, and R. D. Braatz. "Standard representation and unified stability analysis for dynamic artificial neural network models." Neural Networks 2018
[2] Revay, M, R. Wang, and I.R. Manchester. "Recurrent equilibrium networks: Flexible dynamic models with guaranteed stability and robustness." IEEE TAC 2023
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Recurrent Equilibrium Networks (RENs)!!2

MREN(')

= Expressive models including
= lz\ft—1 + BNN&(&—M W)
Ur = Cgt +D NN“(&i—1, W)

3
o

g?g%?&?

[1] Kim, K. K., E. Rios Patrén, and R. D. Braatz. "Standard representation and unified stability analysis for dynamic artificial neural network models." Neural Networks 2018
[2] Revay, M, R. Wang, and I.R. Manchester. "Recurrent equilibrium networks: Flexible dynamic models with guaranteed stability and robustness." IEEE TAC 2023
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Recurrent Equilibrium Networks (RENs)!!2

MREN(')

= Expressive models including
= lz\ft—1 + BNNE(&—M W)
Ur = Cgt + DNNU(&—M W)

3
o

>

g?g%?&?

= Mpgen € L, if there is a storage function V(€) = €7 P¢ verifying
V(Ert) — V(&) < 21| — |l

- Free parametrization!?!: explicit map © — (0, P) such that Mgzey € L, for any © € R?
— Limitations: contractive models, 0 dense

[1] Kim, K. K., E. Rios Patrén, and R. D. Braatz. "Standard representation and unified stability analysis for dynamic artificial neural network models." Neural Networks 2018
[2] Revay, M, R. Wang, and I.R. Manchester. "Recurrent equilibrium networks: Flexible dynamic models with guaranteed stability and robustness." IEEE TAC 2023
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Recurrent Equilibrium Networks (RENs)!!2

MREN(')

= Expressive models including /\
AO=—=0

& =A

Uy

Il
O>

« Mpgen € L, if there is a storage fu P¢ verifying

= V(&) < ¥l — lu

- Free parametrization!?!: explicit map © — (0, P) such that Mgzey € L, for any © € R?
— Limitations: contractive models, 0 dense

[1] Kim, K. K., E. Rios Patrén, and R. D. Braatz. "Standard representation and unified stability analysis for dynamic artificial neural network models." Neural Networks 2018
[2] Revay, M, R. Wang, and I.R. Manchester. "Recurrent equilibrium networks: Flexible dynamic models with guaranteed stability and robustness." IEEE TAC 2023
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EPFL Deep learning for solving NOC!!

— = e ——

Nonlinear Optimal Control (NOC) [ Controlier K
1 |
K() - argmin =E, [»C(XO:Ts UO:T)] -
T ' Fxou)
s.t. CLOSED-LOOP STABILITY === =

B ECC24 Workshop

[1] L. Furieri, C. L. Galimberti, and GFT, “Neural System Level Synthesis: Learning over All Stabilizing Policies for Nonlinear Systems,” IEEE CDC 2022
[2] L. Furieri, C. L. Galimberti, and GFT, “Learning to Boost the Performance of Stable Nonlinear Systems,” ArXiv 2024
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EPFL Deep learning for solving NOC!!

i ——

Nonlinear Optimal Control (NOC) [ Controlier K
1 !
K(-) € argmin TEW [L(Xo.7, Uo:T)] I
' ] F(x,u)
s.t. CLOSED-LOOP STABILITY - ===
1 S
min — Y L£(x5, Uy
@@Rds; (G Usir)
XE = HOE 0P ) + W xS =
suchthat 4 X p VT !
ﬂ>_/\/l@ w-estimator ! ./\/l@ ! w-estimator Z‘M@ 2 w-estimator —— ¢ -

B ECC24 Workshop

[1] L. Furieri, C. L. Galimberti, and GFT, “Neural System Level Synthesis: Learning over All Stabilizing Policies for Nonlinear Systems,” IEEE CDC 2022
[2] L. Furieri, C. L. Galimberti, and GFT, “Learning to Boost the Performance of Stable Nonlinear Systems,” ArXiv 2024
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Deep learning for solving NOC!!]

i ——

Nonlinear Optimal Control (NOC) [ Controlier K
I

i
s.t. CLOSED-LOOP STABILITY L

1
K(-) € argmin TEW [L(Xo:7, Uo:T)]

Rollout in time

s=1
s s S S S _ .S
Xy = h(Xq, Ul q) + W, Xg =W,
S S
such that S . X s ! X o !
W,
—0>_/\/l@ w-estimator ! ./\/l@ ! w-estimator Z‘M@ 2 w-estimator —— ¢ -
\ Y J \ J
t=1 t1o

[1] L. Furieri, C. L. Galimberti, and GFT, “Neural System Level Synthesis: Learning over All Stabilizing Policies for Nonlinear Systems,” IEEE CDC 2022
[2] L. Furieri, C. L. Galimberti, and GFT, “Learning to Boost the Performance of Stable Nonlinear Systems,” ArXiv 2024
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Deep learning for solving NOC!!]

—

Nonlinear Optimal Control (NOC) [ Controlier K
I

I
R

1
K() € argmin =K, [L{xo:7, Uo:7)]

s.t. CLOSED-LOOP STABILITY L

S . .
.1 s s Rollout in time
min — E L(Xy.7 Ug-7)
Ocr? S -~ ' '
" s s S S s S
Xy = R(X7 4, U q) + W, Xg =W,
x3 x5
such that - » L P I U v
—0>_/\/l w-estimator ! ./\/l ! w-estimator 2‘./\/l 2 w-estimator —— ¢ -
S S ©
\ J \ J
- t=1 t12

= Free parametrization of M — unconstrained optimization — backprop ¥ Tensor

= CL stability guaranteed even if optimization stops early () PyTorch

[1] L. Furieri, C. L. Galimberti, and GFT, “Neural System Level Synthesis: Learning over All Stabilizing Policies for Nonlinear Systems,” IEEE CDC 2022
[2] L. Furieri, C. L. Galimberti, and GFT, “Learning to Boost the Performance of Stable Nonlinear Systems,” ArXiv 2024
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The corridor problem

2 robots: point-mass dynamics, nonlinear drag

Goal: CL stability on targets, avoid collisions & obstacles

14
0- -
14

Targets
\

\

(2
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The corridor problem

2 robots: point-mass dynamics, nonlinear drag

Goal: CL stability on targets, avoid collisions & obstacles

Separation of concerns:

1.

Design a simple stabilizing base controller

Targets
\

\

|
- Ead
1 2

= Linear spring at rest on target (overshoot, collisions....)

Performance-boosting controller minimizing

L() = Etarget(') + [/collisions(') + Lobstac/es(')

C.A. Loss

'Ccol/isions

distance(/, j)

118N "7 %9 8)ed8l| Lelsd ‘9



EPFL The corridor problem

= Upon training over a dataset 500 different initial conditions

= CL stability guaranteed even with early stopping of training

1 0% 25T SO 75

B ECC24 Workshop
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Part 2 (Luca): Extensions for real-world deployment

= Tackling the remaining challenges
= Uncertain models, output feedback, distributed...

= Lessons from RL: how to shape your cost function

B ECC24 Workshop
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Crucial challenges

i Performance-boosting operator

| L

/ i’(x,u))

1) Inexact system models

= Only know: F(x,u) = (F + A)(x, u)
= Stability can be compromised!

= estimated w = x — F(x,u) is not the real w!

2) Noisy outputs

= Only know: y = H(x) + v

» Intricate closed-loop map
(w,v) = (u,x,y)

= ...andis notin /5.

B ECC24 Worksh

3) Local measurements

= Distributed performance-boosting?




EPFL Crucial challenges

— h —  — % e— A — b e— % — % e— O — b e— W —I w
| Controller K :
i Performance-boosting operator uj + +

I = ¢

/ F(x,u) |
1) Inexact system models

= Only know: F(x,u) = (F + A)(x,u)
= Stability is compromised!
= estimated w = x — F(x,u) is not the real w!

= ...andis notin /5.

X

B ECC24 Worksh
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The robust NOC problem

G . e i

unknown ol

Fxu) g +A = 26

]
K() € argmin =, [£(Xo:r, Uo:7)]

s.t. CLOSED-LOOP STABILITY
for each possible A

= Assumption: !l Incrementally??? bounded uncertainty
- |[A(a) = A(b)[| <~(A)[la —b|
= Uncertainty gain v(A) estimated from data (e.g., bootstrapping techniques)

= v(A) as a function of #samples... open challenge![1]

[1] Tsiamis, A., Ziemann, I., Matni, N., & Pappas, G. J. (2023). Statistical learning theory for control: A finite-sample perspective. IEEE Control Systems Magazine, 43(6), 67-97.



EPFL A naive small-gain approach

i ————

W R
— F(x,u)#m
;j, unknown

+A

Issues with “standard” small-gain

= Conservative even ifA=0"

: _0
ult: all and only the stabilizing controllers when &

= Qurres
Assume—ormmmar open-loop plant is stable, £ ¢ L, - Then, if we pick K such that

7(K) (’Y(j'-) +’y(A)) <1,

the real closed-loop system is stable.

® ECC24 Workshop



=PFL Robust Performance Boosting!!!

Consider the control architecture below:

w
| Controller K " System
i Performance-boosting operator uj + +
: - | F(x,u)
| :
| 3

>
—>

: . 1
The real closed-loop system is stable if (M) < A FE D

where F is the open-loop plant operator satisfying x = F(u,w).

Remarks
= Unconstrained learning over robustly stabilizing controllers

= e.g., can specify maximal gain v(M) using REN models (Part 1)
= Conservatism vanishesas A — 0!
= right-hand-side becomes infinity = all and only stabilizing policies (Part 1)

B ECC24 Workshop

[1] L. Furieri, C. L. Galimberti, and GFT, “Learning to Boost the Performance of Stable Nonlinear Systems,” ArXiv 2024
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Robust Performance Boosting!!

Consider the control architecture below:

w
| Controller K " System
i Performance-boosting operator uj + +
i ] |
i !

>
—>

: . 1
The real closed-loop system is stable if (M) < MINICIE

where F is the open-loop plant operator satisfying x = F(u,w).

Proof sketch

A

= Notice that x =F(x,u) = F(F(u,w),u), and w=x—F(x,u)
= by substitution we reveal w = A(F(u,w),u) +w

= Upperbounding through the operator gains, the above implies

A HAN(F) +1
W< (T ianthe ) ™




EPFL Crucial challenges

F(x,u)

L >
—>

2) Noisy outputs

= Only know: y = H(x) + v

= Intricate closed-loop map
(w,v) = (u,x,y)

B ECC24 Workshop



EPFL Towards the output-feedback case

e ——— e —

= Classical results based on
= Youla-like formulationsl!
= Kernel-based representations!?!
= Recent results using REN parametrizations
= Contractive closed-loops for linear systems!3!
= Extension to contractive and Lipschitz nonlinear systems!4!

Lack of a general theory
ate-space, input/output.. )

= Different modeling setups (e.g., st e
-stability, contractivity...)

= Different guarantees (Lyp

[11 V. Anantharam and C. A. Desoer. “On the stabilization of nonlinear systems,” IEEE Transactions on Automatic Control, 1984.

[2] K. Fujimoto and T. Sugie. “Youla-Kucera Parameterization for Nonlinear Systems via Observer Based Kernel Representations,” Trans. of the Soc. of Inst. and Control Engineers, 1998.
[3] Wang, R., & Manchester, I. R. “Youla-ren: Learning nonlinear feedback policies with robust stability guarantees”. 2022 American Control Conference (ACC). IEEE.

[4] N.H. Barbara, R. Wang and |.R. Manchester, “Learning Over Contracting and Lipschitz Closed-Loops for Partially-Observed Nonlinear Systems,” IEEE Conf. Decision & Control, 2023.
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EPFL A closed-loop operator perspective

——— .

= We focus on nonlinear systems in input-output form
y=G(u+d)+v GeclL,

Control loop and induced closed-loop operators (¥Y, o)

v d
—%SK+K e W e y
o (V, d) \ij —

A
L

\IJU u

Novel characterization of all achievable closed-loop operators!!!

TY = G o P, %Z;Emﬁéﬂjij?y

Drop the second constraint... new architecture

v d
y u® u
;%g—»K—aé G
,—)

[1] Galimberti, C., Furieri, L., GFT, “Performance-boosting output-feedback controllers for nonlinear systems”, in preparation, 2024

WY = Go W

B ECC24 Workshop
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L Performance-boosting in output-feedback

1
) : i — 1L (ype0, U
»é)i» x LG Equivalent to Youla QeL, 7 [Z Wm0, uro)]
) ——> st y=Gu+d) +v,
u=9Q(y — G(u))

= Learn over all and only £,-stabilizing controllers

1

v d
' . i — [ L (yre0, ur:
ﬁé}i’h K L,é e New architecture |wiit, 7 Wro-uro))

<:> st 01 = w1 — WY 1 (Bio1,0-2)

Bt =y — <Gt © ‘I’f)(ﬁt—h 51&—1)
Uy = W?(ﬁtaét—l)

= Additional insight ¥ = G o ¥*
= Learn over closed-loop maps with stronger properties, e.g. [2]
= E.g., ¥"is a REN, G is contracting — ¥ inherits contractivity

[1] Galimberti, C., Furieri, L., GFT, “Performance-boosting output-feedback controllers for nonlinear systems”, in preparation, 2024
[2] N.H. Barbara, R. Wang and I.R. Manchester, “Learning Over Contracting and Lipschitz Closed-Loops for Partially-Observed Nonlinear Systems,” IEEE Conf. Decision & Control, 2023.
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The sparsity of F is replicated in the controller

State-coupled subsystems

118N "7 %9 8)ed8l| Lelsd ‘9



EPEL Dlstrlbuted control

| | Controller K | System

+

E .| F(x,u)

The sparsity of F is replicated in the controller

State-coupled subsystems .

I', 3 e = = = P fi(X1, X3, Ur) — X7 s,
L" ™ @ 0 SEEE:::::° M diagonal

i 1L
[LTHTUTTHTH

uy

A

B ECC24 Workshop
'N
{|
|
B

118N "7 %9 8)ed8l| Lelsd ‘9




EPEL Distributed control

| Controller K s

| u|| -

| - ~ A ||
i > F(x!u) w L) I——)

1= Learning over distributed Lp 0

F(x, u)

perators is challenging!

T
= Stay tuned for the next talk...
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The magic of the cost

Nonlinear Optimal Control (NOC)
1
K(-) € argmin T_EW [L(xo:7 Uo:7)]

s.t. CLOSED-LOOP STABILITY
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Safety via invariance Waypoint tracking
Unsafe region L.

- - Nonlinear Optimal Control (NOC)

’
K(-) € argmin FEw [L(xo:7 Uo:7)]

J s.t. CLOSED-LOOP STABILITY

Boosting
open-loop performance

= Lo-gain, settling time,
overshoot, ...

B ECC24 Workshop

118N "7 %9 8)ed8l| Lelsd ‘9




B ECC24 Workshop

Waypoints tracking

= Task specs:
— No collisions
— Blue robot: A — B — C, stabilizing around C
— Orange robot: C — A — B, stabilizing around B

A
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= Task specs:
— No collisions
— Blue robot: A — B — C, stabilizing around C
— Orange robot: C — A — B, stabilizing around B

= Waypoints — Linear Temporal Logic formulaell — cost £,

[1]1Li, X., C.-l. Vasile, and C. Belta. "Reinforcement learning with temporal logic rewards.”, IEEE IROS, 2017

Waypoints tracking

A
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Waypoints tracking

= Task specs:
— No collisions
— Blue robot: A — B — C, stabilizing around C
— Orange robot: C — A — B, stabilizing around B

= Waypoints — Linear Temporal Logic formulaell — cost £, B

A

Base controller Performance boosting

[1]1Li, X., C.-l. Vasile, and C. Belta. "Reinforcement learning with temporal logic rewards.”, IEEE IROS, 2017
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!_Controller K
|
L
- ] Fix.u

= Add a safety filter!'l guaranteeing (x;, u;) € C, Vt > 0

= Requires online optimization
= Tweaks u only if needed

[1] Hewing, L., et al. "Learning-based model predictive control: Toward safe learning in control." Annual Review of Control, Robotics, and Autonomous Systems, 2020
[2] Agrawal, A., and K. Sreenath. "Discrete control barrier functions for safety-critical control of discrete systems with application to bipedal robot navigation." Robotics: Science
and Systems. 2017
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[ Controller K | System
| u

F(x, u)

+ d
E: Foou) O~ M) JII N i
oo M | 1=

= Add a safety filter!'l guaranteeing (x;, u;) € C, Vt > 0

= Requires online optimization
= Tweaks u only if needed

= Reduce filter activation embedding soft safety specs in the cost
=« Promote constraint fulfillment — L. = max;.r Barrierq(x:, Us)
« Promote invariancel® of X = {x : h(x) < 0}

Lin, = max;<t ReLU (h(x;) — h(xe.1) — vh(x:))

[1] Hewing, L., et al. "Learning-based model predictive control: Toward safe learning in control." Annual Review of Control, Robotics, and Autonomous Systems, 2020
[2] Agrawal, A., and K. Sreenath. "Discrete control barrier functions for safety-critical control of discrete systems with application to bipedal robot navigation." Robotics: Science
and Systems. 2017
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The safe corridor problem

Unsafe region
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Unsafe region
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L without safety-promoting terms L including L,
Average violation: 43% Average violation: 1.4%
Unsafe region Unsafe region
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The objective is to have two vehicles that visits the pink squares, starting from the
small circles, in the following order:

* Blue vehicle: g, = g4 = gp

« Orange vehicle: g, - g4 — g»

We use the TLTL specification. It reads, for vehicle 1:
P1 = (g, T g, T hg,) N (7 (Vg, V Ug,) Uthg,) N (Tbg, Ubg, ) A

/\ O (¢gz = OD_”vbgi) N /\ Db, | A ODwgb

i=r,g,b 1=1,2

Tos
where:t,, = dy, < 0.05and Yo; = do; > Tobeing  the radils of the obstacle.
The specification ¢, for vehicle 2 can be constructed similarly.

The collision avoidance specification reads: ¢, . = d; o > 2 % ryenicie

The final specification is then: @1 A ¢2 A ¢cq

Cost: we translate the TLTL specification to a cost function £.., . Moreover, we
also consider a regularization term of the form £ — (z — 2)"Q(z — 7)

for promoting the vehicles to do the minimal possible path.
The final costis £, + o, 0,
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¢1 = (wgr ngg ngb) N (_‘ (¢gg v ¢gb) u¢gr) A (_‘@bgbud’gg) A

( /\ D(wgi = OD_‘in)) N ( /\ D¢Oi) A <>D¢Qb

i=7,9,b

i=1,2

The TLTL specification for vehicle 1 reads:

A D@y = O0~y,)

i=7,9,b

(_“bgb U 1/)99

~

(wgr T wgg T zpgb

(_‘ (¢gg v wgb) U ngr

>
]
<
9

i=1,2

~—

> S~— > ~—r 8 >

<
L]

=

=]

: visit g, then g4 then gy,

: and

: don’t visit g, or g, until visiting g,,

: and

: don’t visit g, until visiting g,

: and

: always if visited g; implies next always don’t visit g;,

: and

: always avoid obstacles,

: and

: eventually always state at the final goal (gy).
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PFL- Main result

Il.  Parametrize v(x) as follows

I j * + K,*(.) Conroller |
v=M(w)=M(x—F(x,u)) §§§§’ | PG w : N . :
e — O MO O [Frew |- |

Result part 1 (sufficiency)

The CL maps (=, ®*) achieved by the control scheme above are
stable forany aq()er,

Proof
= By hypothesis, disturbance sequence w € ¢,
= Since M(-) € L, ,then v = M(w) € ¢,
= By hypothesis, base controller K’(-) suchthat (w,v) € {, = (x,u) € ¢,
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PFL- Main result
Result part 2 (necessity)

If K’ € £,,, we can obtain any achievable CL maps (¥*, ") € £, by
searching over the space of stable operators AM < £,,.

—Globally optimal CL maps by searching over Me L,

Proof
= Select M = —K/'(¥*) + ¥ Then, (K, ¥*,¥") c L, = Mc L,

So, the corresponding policy u = K'(x) + M(x — F(x,u)) is within our search space @

What closed-loop maps do we achieve?
We prove by induction that (2™, ®") = (¥*, ¥") | i.e., we achieve the desired CL maps.

Inductive Step: assume (@3, ®%y) = (Y5, i) . Then
By = K§+1(Fj+1=0 Pi0) + I)- K§+1(Fj+1:0 77 0) I)+ U = B @

J+1
:q);'cﬂ :\I/;'C+1

Base Step: & = U§ = [ ... (the initial state is the initial state)




