

Giancarlo Ferrari Trecate & Luca Furieri DECODE group, EPFL, Switzerland

Neural network control

Success stories in robotics

[Kalashnikov et al., '18]

[Youssef et al., '20]

[Kaufmann et al., '23]

- Flexibility of NN controllers, optimization of complex costs
- Safety and stability guarantees for general NL systems
 - Model-based: [Richards et al., '18], [Chang et al., '19], [Dawson et al., '23], ...
 - Data-driven: [Berkenkamp et al., '17], [Recht, '18], [Jin & Lavaei, '18], ...

Common scenario in engineering

Frequent availability of

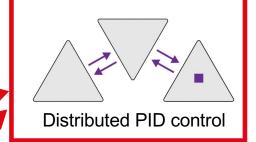
- System models
- Simple stabilizing controllers around an equilibrium or a reference

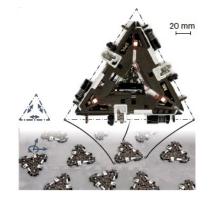
- System models
- Simple stabilizing controllers around an equilibrium or a reference

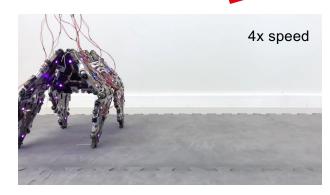
Example: Modular "origami" robot^[1]

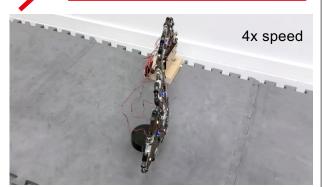
Triangular modules that change shape and rotate around joints

Polygonal meshes for several functions









[1] Belke, C.H., et al. "Morphological flexibility in robotic systems through physical polygon meshing." Nature Machine Intelligence, 2023

Common scenario in engineering

Frequent availability of

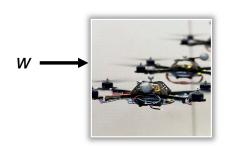
- System models
- Simple stabilizing controllers around an equilibrium or a reference

Improve performance without compromising stability?

Performance boosting

System

Nonlinear, interconnected, stable/pre-stabilized



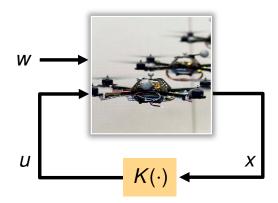
Performance boosting

System

Nonlinear, interconnected, stable/pre-stabilized

Performance-boosting controller

- Stability-preserving, distributed, optimizing complex costs
- Performance = task execution, safety, robustness, ...



Nonlinear Optimal Control (NOC)

$$K(\cdot) \in \operatorname{argmin} \frac{1}{T} \mathbb{E}_{w} \left[\mathcal{L}(x_{0:T}, u_{0:T}) \right]$$

s.t. CLOSED-LOOP STABILITY

Performance boosting

System

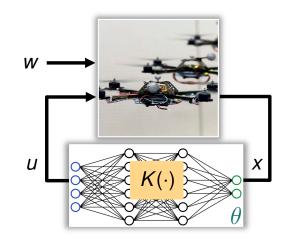
Nonlinear, interconnected, stable/pre-stabilized

Performance-boosting controller

- Stability-preserving, distributed, optimizing complex costs
- Performance = task execution, safety, robustness, ...

Goals

- Leverage NNs flexibility
- Harness open-loop stability for control design



Nonlinear Optimal Control (NOC)

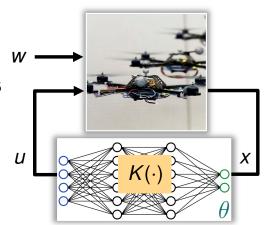
$$K(\cdot) \in \operatorname{argmin} \frac{1}{T} \mathbb{E}_{w} \left[\mathcal{L}(x_{0:T}, u_{0:T}) \right]$$

s.t. CLOSED-LOOP STABILITY

Outline

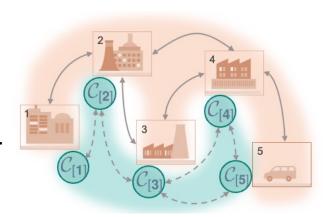
Part 1 (Gianni): Design of performance-boosting policies

- Parametrization of all stabilizing controllers
- NN models of stable operators
 - Solving NOC through NN training



Part 2 (Luca): Extensions for real-world deployment

- Tackling the remaining challenges
 - Uncertain models, output feedback, distributed...
- Lessons from RL: how to shape your cost function



Time-varying, nonlinear, controlled system

$$\begin{cases} X_t = f_t(X_{t-1}, U_{t-1}) + W_t \\ U_t = K_t(X_{t:0}) \end{cases}$$

Setup and notation

Time-varying, nonlinear, controlled system

$$\begin{cases} X_t = f_t(X_{t-1}, U_{t-1}) + W_t \\ U_t = K_t(X_{t:0}) \end{cases}$$
Process noise

Dynamic controller

Time-varying, nonlinear, controlled system

$$\begin{cases} x_t = f_t(x_{t-1}, u_{t-1}) + w_t \\ u_t = K_t(x_{t:0}) \end{cases} \xrightarrow{\mathbf{K}(\mathbf{x}) = (K_0(x_0), K_1(x_{1:0}), ...)} \mathbf{x} = (x_0, x_1, ...)$$

$$\mathbf{K}(\mathbf{x}) = (K_0(x_0), K_1(x_{1:0}), ...)$$
 $\mathbf{x} = (x_0, x_1, ...)$

Operator model

$$\begin{cases} \mathbf{x} = \mathbf{F}(\mathbf{x}, \mathbf{u}) + \mathbf{w} \\ \mathbf{u} = \mathbf{K}(\mathbf{x}) \end{cases}$$

Time-varying, nonlinear, controlled system

$$\begin{cases} X_t = f_t(X_{t-1}, U_{t-1}) + W_t \\ U_t = K_t(X_{t:0}) \end{cases} \times (K(\mathbf{x}) = (K_0(X_0), K_1(X_{1:0}), ...)$$

$$\mathbf{K}(\mathbf{x}) = (K_0(x_0), K_1(x_{1:0}), ...)$$
 $\mathbf{x} = (x_0, x_1, ...)$

Operator model

$$\begin{cases} \mathbf{x} = \mathbf{F}(\mathbf{x}, \mathbf{u}) + \mathbf{w} \\ \mathbf{u} = \mathbf{K}(\mathbf{x}) \end{cases}$$

LTI system:
$$x_t = Ax_{t-1} + Bu_{t-1} + w_t$$

$$\begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & \cdots \\ A & 0 & 0 & \cdots \\ 0 & A & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \\ \vdots \end{bmatrix} + \begin{bmatrix} 0 & 0 & 0 & \cdots \\ B & 0 & 0 & \cdots \\ 0 & B & 0 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{bmatrix} \begin{bmatrix} u_0 \\ u_1 \\ u_2 \\ \vdots \end{bmatrix} + \begin{bmatrix} x_0 \\ w_1 \\ w_2 \\ \vdots \end{bmatrix}$$

Time-varying, nonlinear, controlled system

$$\begin{cases} X_t = f_t(X_{t-1}, U_{t-1}) + W_t \\ U_t = K_t(X_{t:0}) \end{cases} \xrightarrow{\mathbf{K}(\mathbf{x}) = (K_0(X_0), K_1(X_{1:0}), ...)} \mathbf{x} = (x_0, x_1, ...)$$

Operator model

$$\begin{cases} \mathbf{x} = \mathbf{F}(\mathbf{x}, \mathbf{u}) + \mathbf{w} \\ \mathbf{u} = \mathbf{K}(\mathbf{x}) \end{cases}$$

\mathcal{L}_2 -stability

• A is a stable operator if it is causal and $\mathbf{A}(\mathbf{x}) \in \ell_2, \forall \mathbf{x} \in \ell_2$ $\mathbf{x} \in \ell_2$ if $\sum_{t=0}^{\infty} \|x_t\|^2 < \infty$

$$\mathbf{x} \in \ell_2 \text{ if } \sum_{t=0}^{\infty} \|x_t\|^2 < \infty$$

Time-varying, nonlinear, controlled system

$$\begin{cases} X_t = f_t(X_{t-1}, U_{t-1}) + W_t \\ U_t = K_t(X_{t:0}) \end{cases} \times (\mathbf{x}) = (K_0(x_0), K_1(x_{1:0}), ...)$$

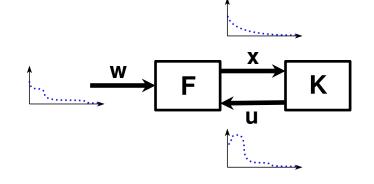
$$\mathbf{K}(\mathbf{x}) = (K_0(x_0), K_1(x_{1:0}), ...)$$
 $\mathbf{x} = (x_0, x_1, ...)$

Operator model
$$\int \mathbf{x} = \mathbf{F}(\mathbf{x}, \mathbf{u}) + \mathbf{w}$$

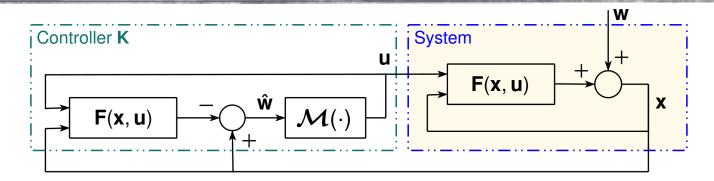
 \mathcal{L}_2 -stability

• A is a stable operator if it is causal and $\mathbf{A}(\mathbf{x}) \in \ell_2, \forall \mathbf{x} \in \ell_2$ $\mathbf{x} \in \ell_2$ if $\sum_{t=0}^{\infty} \|x_t\|^2 < \infty$

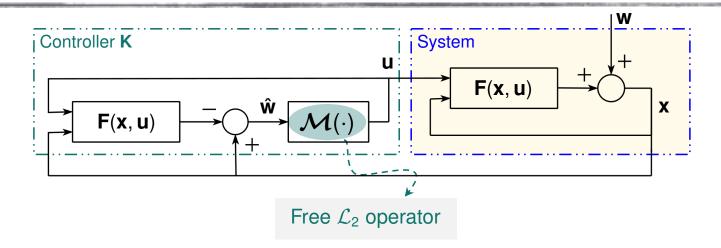
Closed-loop (CL) stability: the operators $\mathbf{w} \to \mathbf{x}$ and $\mathbf{w} \rightarrow \mathbf{u}$ are stable



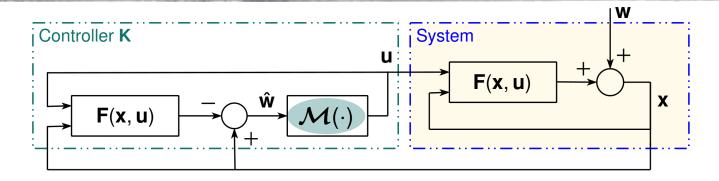
Parametrization of all stabilizing controllers [1,2]



Parametrization of all stabilizing controllers [1,2]



Parametrization of all stabilizing controllers [1,2]

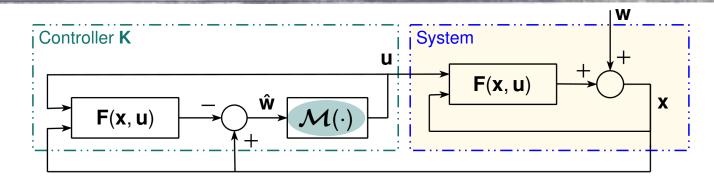


Main result

If the open-loop system is stable

- (⇒) If $\mathcal{M}(\cdot) \in \mathcal{L}_2$ the CL system is stable
- (\Leftarrow) If there is **K**' providing stable CL operators $\mathbf{w} \to \mathbf{x}$ and $\mathbf{w} \to \mathbf{u}$, then $\exists \mathcal{M}(\cdot) \in \mathcal{L}_2$ providing the same CL operators

EPFL Parametrization of all stabilizing controllers[1,2]



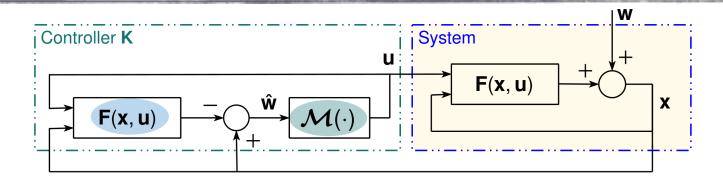
Main result

If the open-loop system is stable

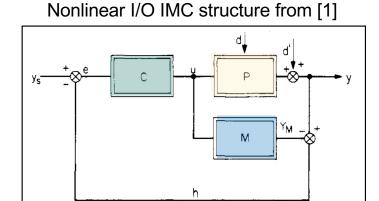
- (⇒) If $\mathcal{M}(\cdot) \in \mathcal{L}_2$ the CL system is stable
- (\Leftarrow) If there is **K**' providing stable CL operators $\mathbf{w} \to \mathbf{x}$ and $\mathbf{w} \to \mathbf{u}$, then $\exists \mathcal{M}(\cdot) \in \mathcal{L}_2$ providing the same CL operators

Idea behind (\Rightarrow): no model mismatch yield $\hat{\mathbf{w}} = \mathbf{w}$, opening the loop

IMC and Youla parametrization

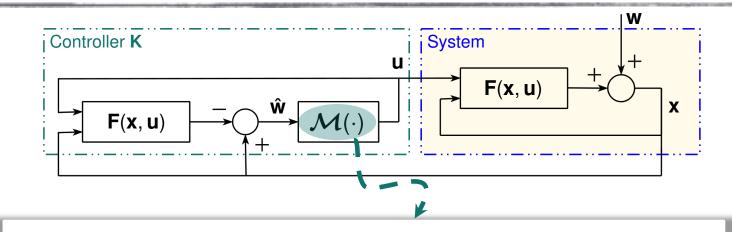


- Internal Model Control^[1,2]
 - Sufficient for stability^[1] if P=M in the I/O setting, also necessary for LTI systems^[2]
 - IMC for setpoint tracking [1,2]
 - Problem: C must "invert" the plant [1]
- Nonlinear Youla parametrization^[3]



[1] Economou, C. G., M. Morari, and B. O. Palsson. "Internal model control: Extension to nonlinear system." Industrial & Engineering Chemistry Process Design and Development, 1986 [2] Garcia, C. E., and M. Morari. "Internal model control. A unifying review and some new results." Industrial & Engineering Chemistry Process Design and Development, 1982 [3] C.A. Desoer, R.-W. Liu. "Global parametrization of feedback systems with nonlinear plants". Systems & Control Letters, 1982

Next question



How to implement stable operators?

Finite-dimensional parametrizations of $\mathcal{M}^{ heta} \in \mathcal{L}_2$

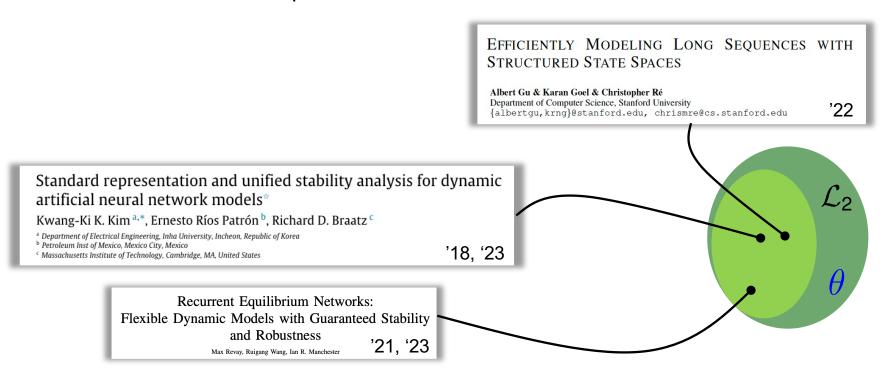
• Linear operators $\mathcal{M}^{\theta} = \sum_{h=0}^{N} \frac{M_h}{z^h}$ (FIR models)

Finite-dimensional parametrizations of $\mathcal{M}^{ heta} \in \mathcal{L}_2$

- Linear operators $\mathcal{M}^{\theta} = \sum_{h=0}^{N} \frac{M_h}{z^h}$ (FIR models)
- Nonlinear operators?

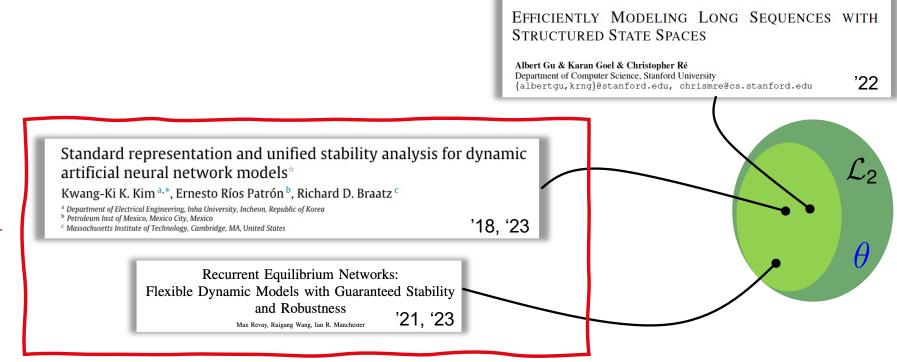
Finite-dimensional parametrizations of $\mathcal{M}^{ heta} \in \mathcal{L}_2$

- Linear operators $\mathcal{M}^{\theta} = \sum_{h=0}^{N} \frac{M_h}{z^h}$ (FIR models)
- Nonlinear operators?

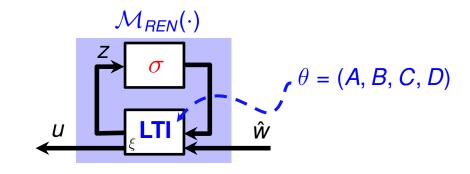


Finite-dimensional parametrizations of $\mathcal{M}^{ heta} \in \mathcal{L}_2$

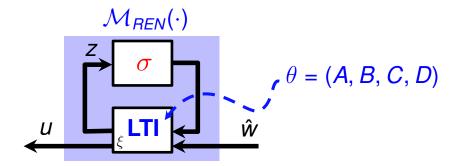
- Linear operators $\mathcal{M}^{\theta} = \sum_{h=0}^{N} \frac{M_h}{z^h}$ (FIR models)
- Nonlinear operators?



Recurrent Equilibrium Networks (RENs)[1,2]



Recurrent Equilibrium Networks (RENs)[1,2]

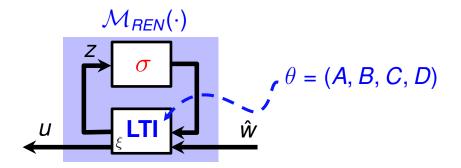


Expressive models including

$$\xi_t = \hat{A}\xi_{t-1} + \hat{B} \operatorname{NN}^{\xi}(\xi_{t-1}, \hat{w}_t)$$

$$u_t = \hat{C}\xi_t + \hat{D} \operatorname{NN}^{u}(\xi_{t-1}, \hat{w}_t)$$

Recurrent Equilibrium Networks (RENs)[1,2]



Expressive models including

ling
$$\xi_t = \hat{A}\xi_{t-1} + \hat{B} \operatorname{NN}^{\xi}(\xi_{t-1}, \hat{w}_t)$$

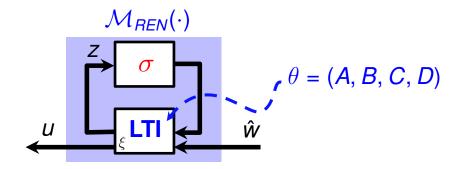
$$u_t = \hat{C}\xi_t + \hat{D} \operatorname{NN}^{u}(\xi_{t-1}, \hat{w}_t)$$

• $\mathcal{M}_{REN} \in \mathcal{L}_2$ if there is a storage function $V(\xi) = \xi^T P \xi$ verifying

$$V(\xi_{t+1}) - V(\xi_t) \leq \gamma^2 ||\hat{w}_t|| - ||u_t||$$

- Free parametrization^[2]: explicit map $\Theta \mapsto (\theta, P)$ such that $\mathcal{M}_{REN} \in \mathcal{L}_2$ for any $\Theta \in \mathbb{R}^d$
 - **Limitations**: contractive models, θ dense

Recurrent Equilibrium Networks (RENs)[1,2]



Expressive models including

$$\xi_t = \hat{A}\xi$$
 $u_t = \hat{C}$

More details in the next talk!

• $\mathcal{M}_{REN} \in \mathcal{L}_2$ if there is a storage function $\mathcal{L}_2 = \xi^T P \xi$ verified the storage function $\mathcal{L}_2 = \xi^T P \xi$

$$V(\xi_t) \leq \gamma^2 \|\hat{w}_t\| - \|u_t\|$$

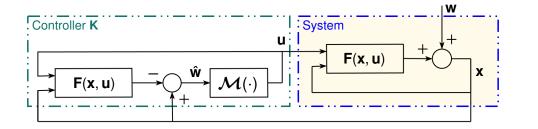
- Free parametrization^[2]: explicit map $\Theta \mapsto (\theta, P)$ such that $\mathcal{M}_{REN} \in \mathcal{L}_2$ for any $\Theta \in \mathbb{R}^d$
 - **Limitations**: contractive models, θ dense

Deep learning for solving NOC[1]

Nonlinear Optimal Control (NOC)

$$K(\cdot) \in \operatorname{argmin} \frac{1}{T} \mathbb{E}_{w} \left[\mathcal{L}(x_{0:T}, u_{0:T}) \right]$$

s.t. CLOSED-LOOP STABILITY

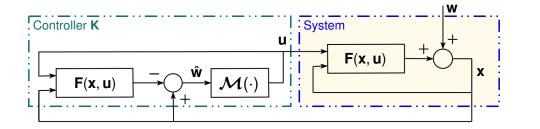


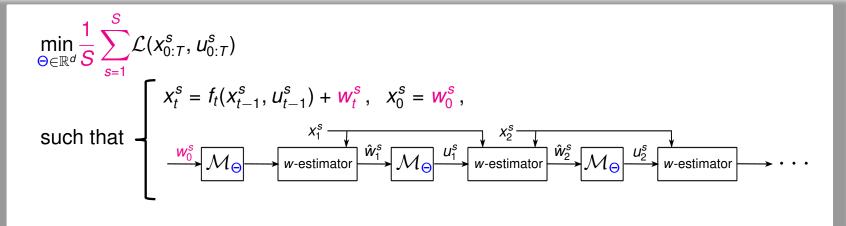
Deep learning for solving NOC[1]

Nonlinear Optimal Control (NOC)

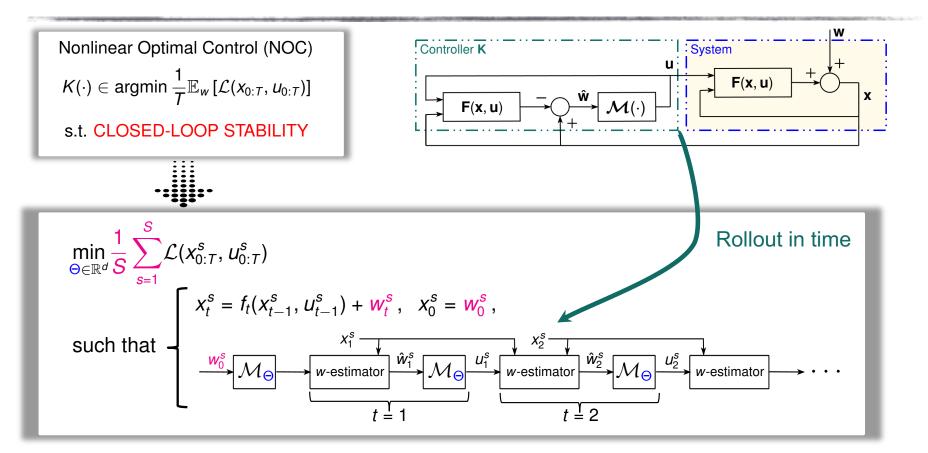
$$K(\cdot) \in \operatorname{argmin} \frac{1}{T} \mathbb{E}_{w} \left[\mathcal{L}(x_{0:T}, u_{0:T}) \right]$$

s.t. CLOSED-LOOP STABILITY

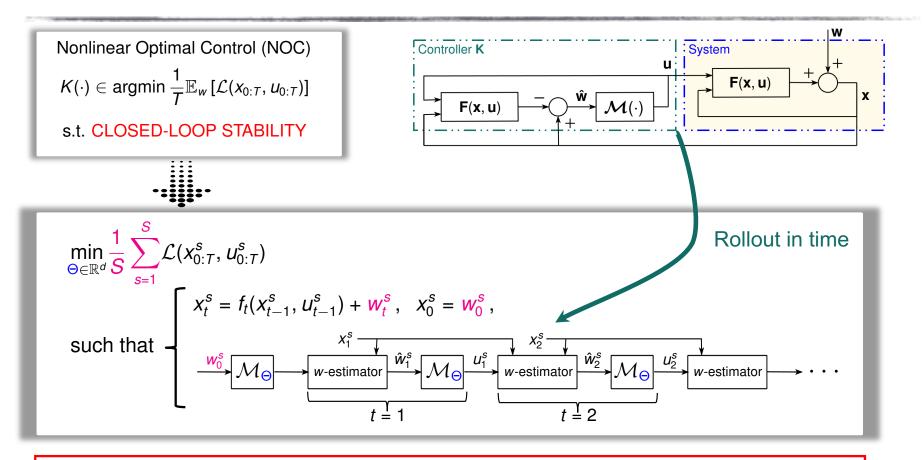




Deep learning for solving NOC[1]



Deep learning for solving NOC[1]

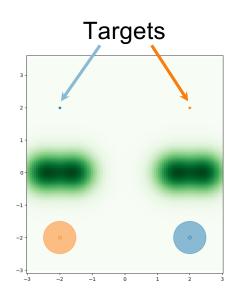


- ullet Free parametrization of $\mathcal{M} o$ unconstrained optimization o backprop
- CL stability guaranteed even if optimization stops early

[1] L. Furieri, C. L. Galimberti, and GFT, "Neural System Level Synthesis: Learning over All Stabilizing Policies for Nonlinear Systems," IEEE CDC 2022 [2] L. Furieri, C. L. Galimberti, and GFT, "Learning to Boost the Performance of Stable Nonlinear Systems," ArXiv 2024

The corridor problem

- 2 robots: point-mass dynamics, nonlinear drag
- Goal: CL stability on targets, avoid collisions & obstacles

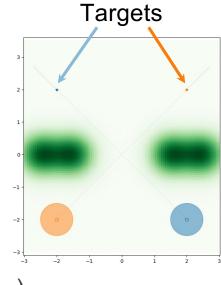


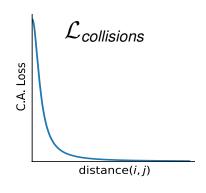
The corridor problem

- 2 robots: point-mass dynamics, nonlinear drag
- Goal: CL stability on targets, avoid collisions & obstacles

- Linear spring at rest on target (overshoot, collisions....)
- 2. Performance-boosting controller minimizing

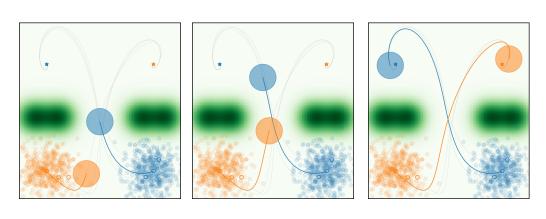
$$\mathcal{L}(\cdot) = \mathcal{L}_{target}(\cdot) + \mathcal{L}_{collisions}(\cdot) + \mathcal{L}_{obstacles}(\cdot)$$

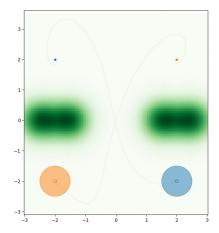




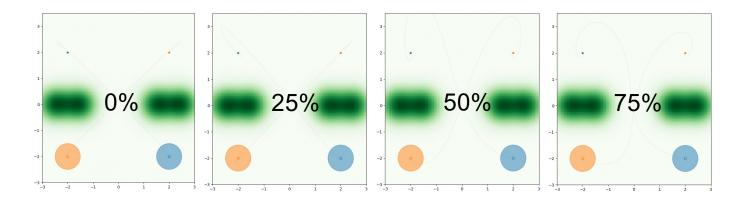
The corridor problem

Upon training over a dataset 500 different initial conditions



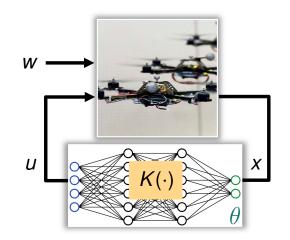


CL stability guaranteed even with early stopping of training



Part 1 (Gianni): Design of performance-boosting policies

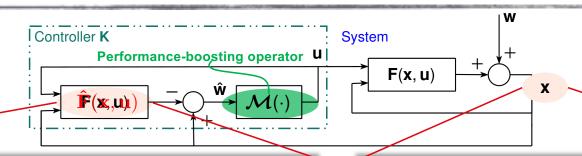
- Parametrization of all stabilizing controllers
- NN models of stable operators
 - Solving NOC through NN training



Part 2 (Luca): Extensions for real-world deployment

- Tackling the remaining challenges
 - Uncertain models, output feedback, distributed...
- Lessons from RL: how to shape your cost function

Crucial challenges

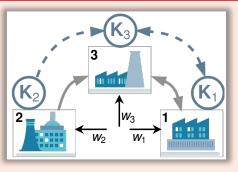


1) Inexact system models

- lacktriangle Only know: $\mathbf{\hat{F}}(\mathbf{x},\mathbf{u}) = (\mathbf{F} + \boldsymbol{\Delta})(\mathbf{x},\mathbf{u})$
- Stability can be compromised!
 - estimated $\hat{\mathbf{w}} = \mathbf{x} \hat{\mathbf{F}}(\mathbf{x}, \mathbf{u})$ is not the real $\mathbf{w}!$
 - ... and is not in ℓ_2 .

2) Noisy outputs

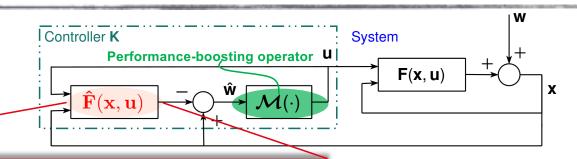
- Only know: $\mathbf{y} = \mathbf{H}(\mathbf{x}) + \mathbf{v}$
- Intricate closed-loop map $(\mathbf{w}, \mathbf{v}) \to (\mathbf{u}, \mathbf{x}, \mathbf{y})$



3) Local measurements

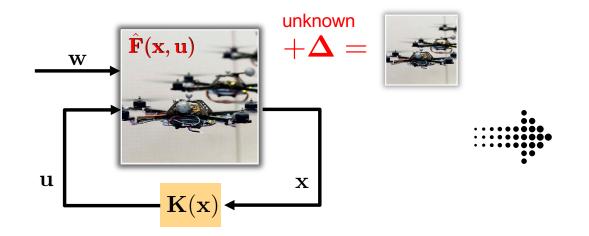
Distributed performance-boosting?

Crucial challenges



1) Inexact system models

- Only know: $\hat{\mathbf{F}}(\mathbf{x}, \mathbf{u}) = (\mathbf{F} + \boldsymbol{\Delta})(\mathbf{x}, \mathbf{u})$
- Stability is compromised!
 - estimated $\hat{\mathbf{w}} = \mathbf{x} \hat{\mathbf{F}}(\mathbf{x}, \mathbf{u})$ is not the real $\mathbf{w}!$
 - ... and is not in ℓ_2 .

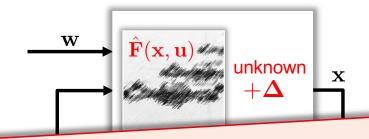


$$K(\cdot) \in \operatorname{argmin} \frac{1}{T} \mathbb{E}_w \left[\mathcal{L}(x_{0:T}, u_{0:T}) \right]$$

s.t. CLOSED-LOOP STABILITY
for each possible Δ

- Assumption: !!! Incrementally??? bounded uncertainty
 - $||\Delta(\mathbf{a}) \Delta(\mathbf{b})|| \le \gamma(\Delta)||\mathbf{a} \mathbf{b}||$
- Uncertainty gain $\gamma(\Delta)$ estimated from data (e.g., bootstrapping techniques)
 - γ(Δ) as a function of #samples... open challenge![1]

A naïve small-gain approach



Issues with "standard" small-gain

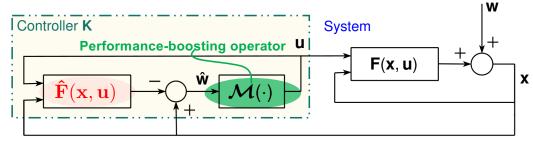
- Conservative even if $\Delta = 0$!
 - lacktriangledown Our result: all and only the stabilizing controllers when $\Delta=0$

Assume nominal open-loop plant is stable, $\hat{m{\mathcal{F}}}\in\mathcal{L}_p$. Then, if we pick ${f K}$ such that

$$\gamma(\mathbf{K})\left(\gamma(\hat{\mathbf{F}}) + \gamma(\mathbf{\Delta})\right) \le 1,$$

the real closed-loop system is stable.

Robust Performance Boosting^[1]



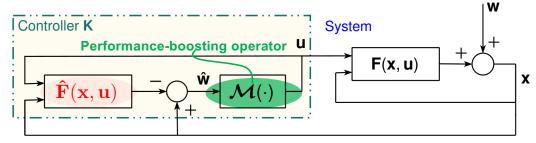
The real closed-loop system is stable if $\gamma(\mathcal{M}) < \frac{1}{\gamma(\Delta)(\gamma(\mathcal{F}) + 1)}$,

where \mathcal{F} is the open-loop plant operator satisfying $\mathbf{x} = \mathcal{F}(\mathbf{u}, \mathbf{w})$.

Remarks

- Unconstrained learning over robustly stabilizing controllers
 - e.g., can specify maximal gain $\gamma(\mathcal{M})$ using REN models (Part 1)
- Conservatism vanishes as $\Delta \rightarrow 0$!
 - right-hand-side becomes infinity → all and only stabilizing policies (Part 1)

Consider the control architecture below:



The real closed-loop system is stable if $\gamma(\mathcal{M}) < \frac{1}{\gamma(\Delta) \left(\gamma(\mathcal{F}) + 1\right)}$,

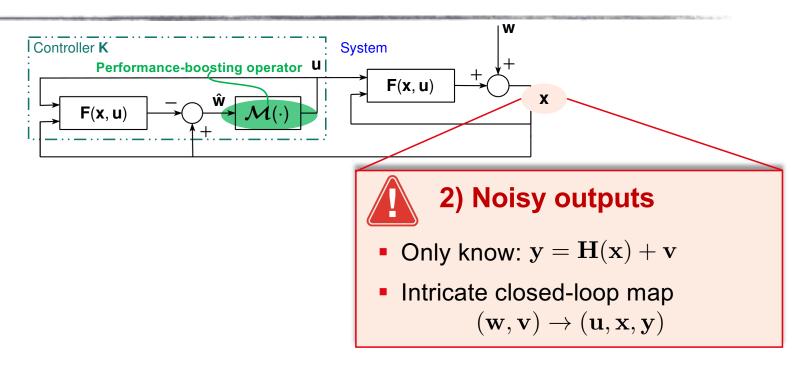
where \mathcal{F} is the open-loop plant operator satisfying $\mathbf{x} = \mathcal{F}(\mathbf{u}, \mathbf{w})$.

Proof sketch

- Notice that $\mathbf{x} = \mathbf{F}(\mathbf{x}, \mathbf{u}) = \mathbf{F}(\mathcal{F}(\mathbf{u}, \mathbf{w}), \mathbf{u})$, and $\hat{\mathbf{w}} = \mathbf{x} \hat{\mathbf{F}}(\mathbf{x}, \mathbf{u})$
 - by substitution we reveal $\hat{\mathbf{w}} = \Delta(\mathcal{F}(\mathbf{u}, \mathbf{w}), \mathbf{u}) + \mathbf{w}$
- Upperbounding through the operator gains, the above implies

$$|\hat{\mathbf{w}}| \le \left(\frac{\gamma(\boldsymbol{\Delta})\gamma(\boldsymbol{\mathcal{F}}) + 1}{1 - \gamma(\boldsymbol{\Delta})\gamma(\boldsymbol{\mathcal{M}})\left(\gamma(\boldsymbol{\mathcal{F}}) + 1\right)}\right) |\mathbf{w}|.$$

Crucial challenges



- Classical results based on
 - Youla-like formulations^[1]
 - Kernel-based representations^[2]
- Recent results using REN parametrizations
 - Contractive closed-loops for linear systems^[3]
 - Extension to contractive and Lipschitz nonlinear systems^[4]

Lack of a general theory

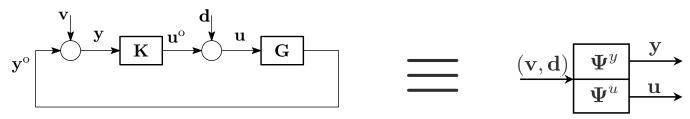
- Different modeling setups (e.g., state-space, input/output...)
- Different guarantees (\mathcal{L}_p -stability, contractivity...)
- [1] V. Anantharam and C. A. Desoer. "On the stabilization of nonlinear systems," *IEEE Transactions on Automatic Control*, 1984.
- [2] K. Fujimoto and T. Sugie. "Youla-Kucera Parameterization for Nonlinear Systems via Observer Based Kernel Representations," *Trans. of the Soc. of Inst. and Control Engineers*, 1998. [3] Wang, R., & Manchester, I. R. "Youla-ren: Learning nonlinear feedback policies with robust stability guarantees". 2022 American Control Conference (ACC). IEEE.
- [4] N.H. Barbara, R. Wang and I.R. Manchester, "Learning Over Contracting and Lipschitz Closed-Loops for Partially-Observed Nonlinear Systems," *IEEE Conf. Decision & Control*, 2023.

A closed-loop operator perspective

We focus on nonlinear systems in input-output form

$$\mathbf{y} = \mathbf{G}(\mathbf{u} + \mathbf{d}) + \mathbf{v}$$
 $\mathbf{G} \in \mathcal{L}_p$

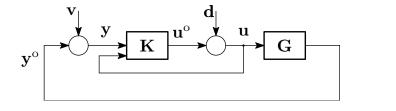
• Control loop and induced closed-loop operators (Ψ^y, Ψ^u)



Novel characterization of all achievable closed-loop operators^[1]

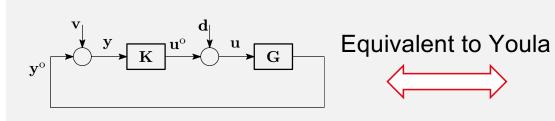
$$oldsymbol{\Psi}^y = \mathbf{G} \circ oldsymbol{\Psi}^u, \quad oldsymbol{\Psi}^u = oldsymbol{\Psi}^u \odot oldsymbol{\Phi}^{(y,u)} oldsymbol{\Psi}^y$$

Drop the second constraint... new architecture



$$\mathbf{\Psi}^y = \mathbf{G} \circ \mathbf{\Psi}^u$$

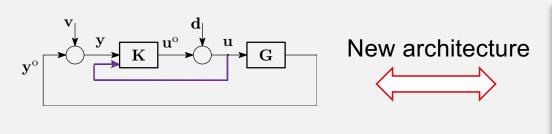
Performance-boosting in output-feedback



$$\min_{\mathbf{Q} \in \mathcal{L}_p} \frac{1}{T} \left[\mathcal{L}(y_{T:0}, u_{T:0}) \right]$$
s. t. $\mathbf{y} = \mathbf{G} \left(\mathbf{u} + \mathbf{d} \right) + \mathbf{v},$

$$\mathbf{u} = \mathbf{Q} \left(\mathbf{y} - \mathbf{G}(\mathbf{u}) \right)$$

• Learn over all and only \mathcal{L}_p -stabilizing controllers

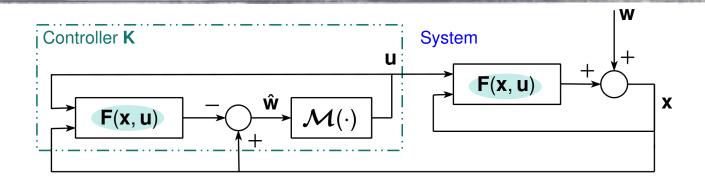


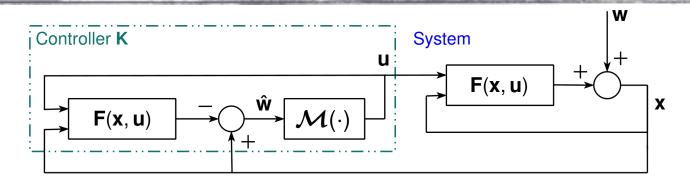
$$\min_{\mathbf{\Psi}^{u} \in \mathcal{L}_{p}} \frac{1}{T} \left[\mathcal{L}(y_{T:0}, u_{T:0}) \right]$$
s. t. $\delta_{t-1} = u_{t-1} - \mathbf{\Psi}^{u}_{t-1}(\beta_{t-1}, \delta_{t-2})$

$$\beta_{t} = y_{t} - (\mathbf{G}_{t} \circ \mathbf{\Psi}^{u}_{t})(\beta_{t-1}, \delta_{t-1})$$

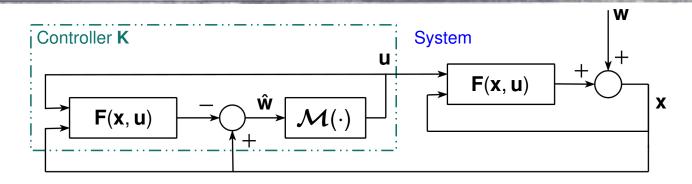
$$u_{t} = \mathbf{\Psi}^{u}_{t}(\beta_{t}, \delta_{t-1})$$

- Additional insight $\Psi^y = \mathbf{G} \circ \Psi^u$
 - Learn over closed-loop maps with stronger properties, e.g. [2]
 - E.g., Ψ^u is a REN, G is contracting $\Longrightarrow \Psi^y$ inherits contractivity

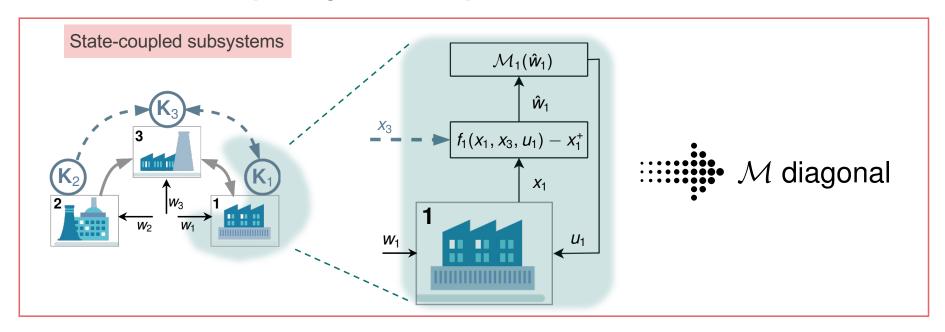


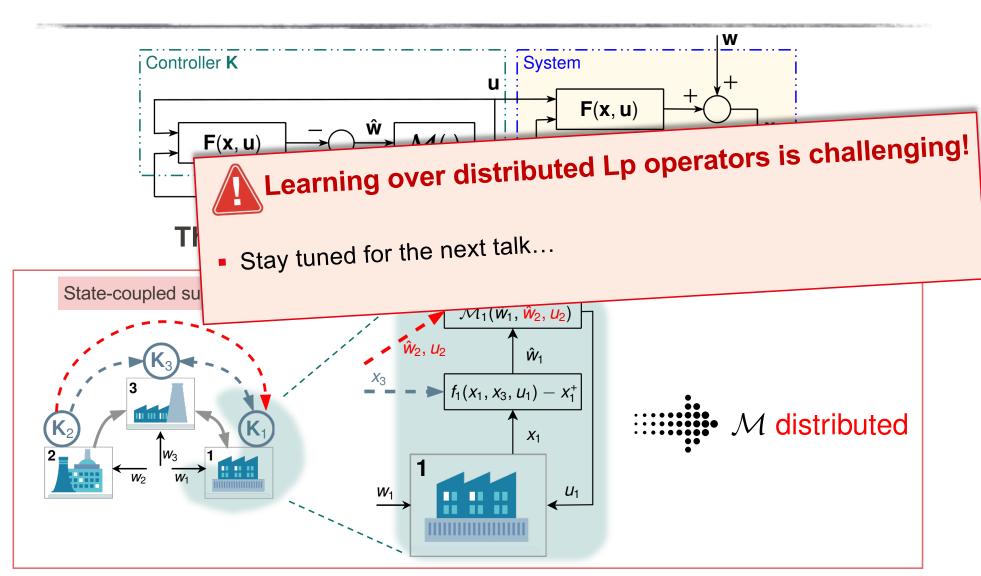


The sparsity of F is replicated in the controller



The sparsity of F is replicated in the controller





ECC24 Workshop

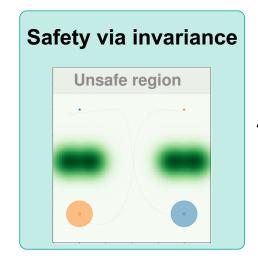
The magic of the cost

Nonlinear Optimal Control (NOC)

$$K(\cdot) \in \operatorname{argmin} \frac{1}{T} \mathbb{E}_{w} \left[\mathcal{L}(x_{0:T}, u_{0:T}) \right]$$

s.t. CLOSED-LOOP STABILITY

The magic of the cost



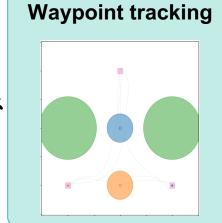
Nonlinear Optimal Control (NOC)

$$K(\cdot) \in \operatorname{argmin} \frac{1}{T} \mathbb{E}_{w} \left[\mathcal{L}(x_{0:T}, u_{0:T}) \right]$$

s.t. CLOSED-LOOP STABILITY

Boosting open-loop performance

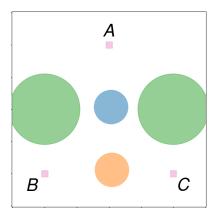
 L₂-gain, settling time, overshoot, ...



Waypoints tracking

Task specs:

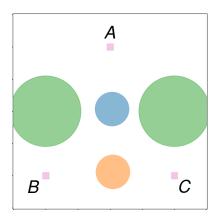
- No collisions
- Blue robot: $A \rightarrow B \rightarrow C$, stabilizing around C
- Orange robot: $C \rightarrow A \rightarrow B$, stabilizing around B



Waypoints tracking

Task specs:

- No collisions
- Blue robot: $A \rightarrow B \rightarrow C$, stabilizing around C
- Orange robot: $C \rightarrow A \rightarrow B$, stabilizing around B
- Waypoints o Linear Temporal Logic formulae^[1] o cost \mathcal{L}_{way}

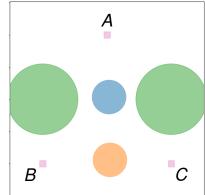


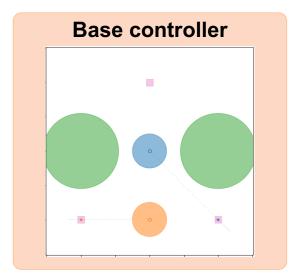
EPFL

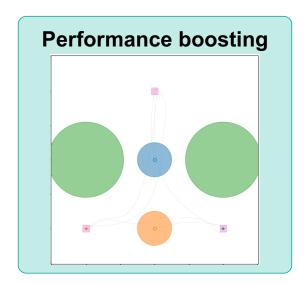
Waypoints tracking

Task specs:

- No collisions
- Blue robot: $A \rightarrow B \rightarrow C$, stabilizing around C
- Orange robot: $C \rightarrow A \rightarrow B$, stabilizing around B

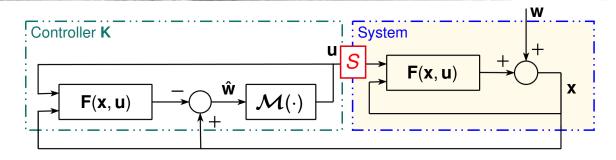






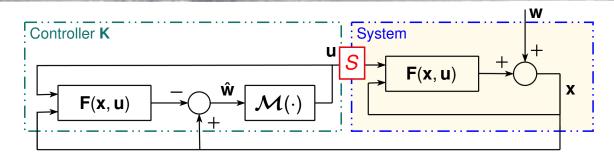
EPFL

Safety



- Add a safety filter^[1] guaranteeing $(x_t, u_t) \in C, \forall t > 0$
 - Requires online optimization
 - Tweaks u only if needed

Safety

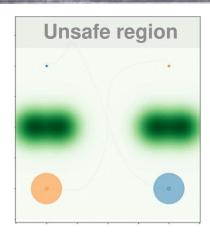


- Add a safety filter^[1] guaranteeing $(x_t, u_t) \in C$, $\forall t > 0$
 - Requires online optimization
 - Tweaks u only if needed
- Reduce filter activation embedding soft safety specs in the cost
 - Promote constraint fulfillment $\rightarrow \mathcal{L}_{safe} = \max_{t < T} \textit{Barrier}_{\mathcal{C}}(x_t, u_t)$
 - Promote invariance^[2] of $\mathcal{X} = \{x : h(x) \leq 0\}$

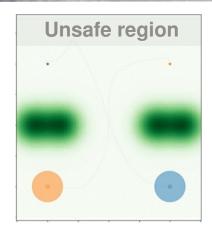
$$\mathcal{L}_{inv} = \max_{t < T} \text{ReLU} \left(h(x_t) - h(x_{t+1}) - \gamma h(x_t) \right)$$

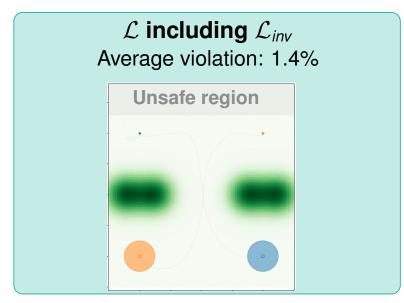
[1] Hewing, L., et al. "Learning-based model predictive control: Toward safe learning in control." Annual Review of Control, Robotics, and Autonomous Systems, 2020 [2] Agrawal, A., and K. Sreenath. "Discrete control barrier functions for safety-critical control of discrete systems with application to bipedal robot navigation." *Robotics: Science and Systems*. 2017

The safe corridor problem



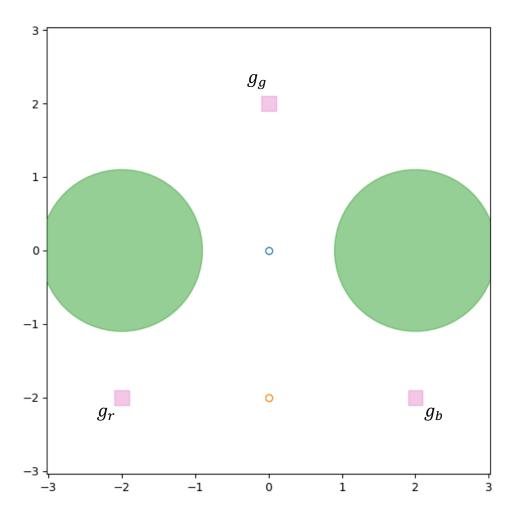
The safe corridor problem





ECC24 Workshop

EP₩aypoints



- The objective is to have two vehicles that visits the pink squares, starting from the small circles, in the following order:
 - Blue vehicle: $g_r \rightarrow g_g \rightarrow g_b$
 - Orange vehicle: $g_b \rightarrow g_g \rightarrow g_r$
- We use the TLTL specification. It reads, for vehicle 1:

$$\phi_{1} = (\psi_{g_{r}} \mathcal{T} \psi_{g_{g}} \mathcal{T} \psi_{g_{b}}) \wedge (\neg (\psi_{g_{g}} \vee \psi_{g_{b}}) \mathcal{U} \psi_{g_{r}}) \wedge (\neg \psi_{g_{b}} \mathcal{U} \psi_{g_{g}}) \wedge \left(\bigwedge_{i=r,g,b} \Box (\psi_{g_{i}} \Rightarrow \bigcirc \Box \neg \psi_{g_{i}}) \right) \wedge \left(\bigwedge_{i=1,2} \Box \psi_{o_{i}} \right) \wedge \Diamond \Box \psi_{g_{b}}$$

where: $\psi_{g_i}=d_{g_i}<0.05$ and $\;\psi_{o_i}=d_{o_i}>r_{\!\!,o}$ being the radius of the obstacle.

The specification ϕ_2 for vehicle 2 can be constructed similarly.

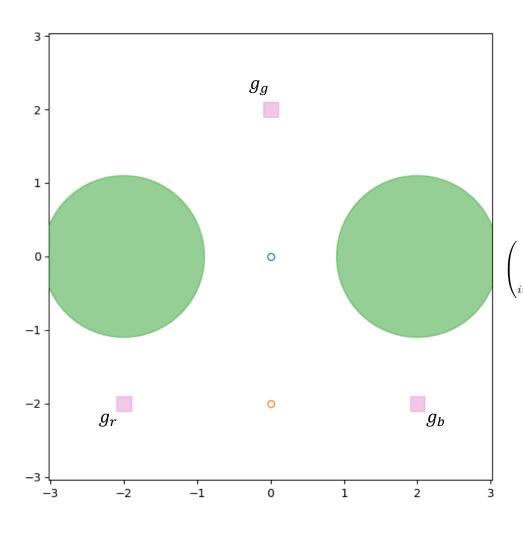
The collision avoidance specification reads: $\phi_{ca} = d_{1,2} > 2 * r_{vehicle}$

- The final specification is then: $\phi_1 \wedge \phi_2 \wedge \phi_{ca}$
- Cost: we translate the TLTL specification to a cost function \mathcal{L}_{TL} . Moreover, we also consider a regularization term of the form $\mathcal{L}_x = (x \bar{x})^{\top} Q(x \bar{x})$

for promoting the vehicles to do the minimal possible path.

The final cost is $\mathcal{L}_{TL} + \alpha_x \mathcal{L}_x$

EP₩aypoints



$$\phi_{1} = \left(\psi_{g_{r}} \mathcal{T} \psi_{g_{g}} \mathcal{T} \psi_{g_{b}}\right) \wedge \left(\neg \left(\psi_{g_{g}} \vee \psi_{g_{b}}\right) \mathcal{U} \psi_{g_{r}}\right) \wedge \left(\neg \psi_{g_{b}} \mathcal{U} \psi_{g_{g}}\right) \wedge \left(\bigwedge_{i=1,2} \Box \psi_{o_{i}}\right) \wedge \left(\bigwedge_{i=1,2} \Box \psi_{o_{i}}\right) \wedge \Diamond \Box \psi_{g_{b}}$$

The TLTL specification for vehicle 1 reads:

$$\left(\psi_{g_r} \, \mathcal{T} \, \psi_{g_g} \, \mathcal{T} \, \psi_{g_b} \right) : \text{visit } g_r \text{ then } g_g \text{ then } g_b, \\ \wedge : \text{ and }$$

$$\left(\neg \left(\psi_{g_g} \lor \psi_{g_b} \right) \, \mathcal{U} \, \psi_{g_r} \right) : \text{don't visit } g_g \text{ or } g_b \text{ until visiting } g_r, \\ \wedge : \text{ and }$$

$$\left(\neg \psi_{g_b} \, \mathcal{U} \, \psi_{g_g} \right) : \text{don't visit } g_b \text{ until visiting } g_g, \\ \wedge : \text{ and }$$

$$\left(\bigwedge_{i=r,g,b} \Box \left(\psi_{g_i} \Rightarrow \bigcirc \Box \neg \psi_{g_i} \right) \right) : \text{ always if visited } g_i \text{ implies next always don't visit } g_i, \\ \wedge : \text{ and }$$

$$\left(\bigwedge_{i=1,2} \Box \psi_{o_i} \right) : \text{ always avoid obstacles, } \\ \wedge : \text{ and }$$

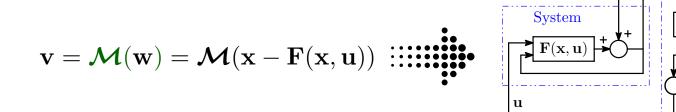
 $\Diamond \Box \psi_{q_b}$: eventually always state at the final goal (g_b) .

EPFL

Controller

EPFL Main result

II. Parametrize v(x) as follows



Result part 1 (sufficiency)

The CL maps (Φ^x,Φ^u) achieved by the control scheme above are stable for any $\mathcal{M}(\cdot)\in\mathcal{L}_p$

Proof

- ullet By hypothesis, disturbance sequence $\mathbf{w} \in \ell_p$
- Since $\mathcal{M}(\cdot) \in \mathcal{L}_p$, then $\mathbf{v} = \mathcal{M}(\mathbf{w}) \in \ell_p$
- By hypothesis, base controller $\mathbf{K}'(\cdot)$ such that $(\mathbf{w},\mathbf{v})\in\ell_p\implies (\mathbf{x},\mathbf{u})\in\ell_p$

EPFL Main result

Result part 2 (necessity)

If $\mathbf{K}' \in \mathcal{L}_p$, we can obtain any achievable CL maps $(\mathbf{\Psi^x}, \mathbf{\Psi^u}) \in \mathcal{L}_p$ by searching over the space of stable operators $\mathcal{M} \in \mathcal{L}_p$.

Globally optimal CL maps by searching over

$$\mathcal{M} \in \mathcal{L}_p$$

Proof

- Select $\mathcal{M} = -\mathbf{K}'(\mathbf{\Psi^x}) + \mathbf{\Psi^u}$. Then, $(\mathbf{K}', \mathbf{\Psi^x}, \mathbf{\Psi^u}) \in \mathcal{L}_p \implies \mathcal{M} \in \mathcal{L}_p$
- So, the corresponding policy $u = K'(x) + \mathcal{M}(x F(x, u))$ is within our search space

What closed-loop maps do we achieve?

- We prove by induction that $(\Phi^x, \Phi^u) = (\Psi^x, \Psi^u)$, i.e., we achieve the desired CL maps.
- Inductive Step: assume $(\Phi^x_{j:0}, \Phi^u_{j:0}) = (\Psi^x_{j:0}, \Psi^u_{j:0})$. Then

$$\Phi_{j+1}^{u} = K'_{j+1} \left(F_{j+1:0} \left(\Phi_{j:0}^{x}, \Phi_{j:0}^{x} \right) + I \right) - K'_{j+1} \left(F_{j+1:0} \left(\Psi_{j:0}^{x}, \Psi_{j:0}^{u} \right) + I \right) + \Psi_{j+1}^{u} = \Psi_{j+1}^{u}$$

$$= \Phi_{j+1}^{x}$$

$$= \Psi_{j+1}^{x}$$

• Base Step: $\Phi_0^x = \Psi_0^x = I \dots$ (the initial state is the initial state)