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= Linear systems with quadratic costs?

= NL policies needed! witsenhausen, 1969]
= ... NL objectives for NL systems

" Recent attempt: Deep Neural Nets (DNNs)
- Stability? Safety?

Il) Adaptation to unmodeled disturbances
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Dynamical
sr > System
& optimal control
Challenges
I) Optimality in coordinated tasks Il) Adaptation to unmodeled disturbances

= Linear systems with quadratic costs? = Most ODC approaches so far...

= NL policies needed! jwitsenhausen, 1969] = Well-modeled disturbances only
= .. NL objectives for NL systems = Safety at the cost of performance

" Recent attempt: Deep Neural Nets (DNNs)

- Regret Minimization to safely go beyond?
- Stability? Safety?




=F*L " Presentation Structure

1. Learning over all and only stabilizing policies for nonlinear optimal
control using DNNs

Luca Furieri, Clara Galimberti and Giancarlo Ferrari Trecate, CDC 2022

“Neural System Level Synthesis: Learning over all and only stabilizing policies for nonlinear systems”, I
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NOC Problem

> Ua(), U(t))]

u X s.t. CLOSED-LOOP STABILITY

1
veel® K(-) € argmin TEU}

Challenges

= Nonlinearities: system dynamics f(-), loss function [(-), control policy K (-)
e MO
] EI |Iae| talbgle) .ept'l'.'"za“e“

= Dependability: stability during the optimization
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Our Contribution

System Level Synthesis (SLS) philosophy

From designing stabilizing policies....

To designing stable closed-loop operators
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=PFL  Setup and Notation

General, non-Markovian, time-varying controlled systems .
signal space

Ly — ft(il?t—lzo, ut—l:O) + wy K(x) = (Ko(z0), K1(z10), - ) > X = F(X, 11) + W
u = K(x)

U = Kt<xt:0) x = (29, %1, ..)
Closed-loop (CL) maps induced by interconnection of F and K

W x :, »*[F, K] P>
— cecoee W )
F K 1iiiiaege —l
i oo QU[F,K] uﬁ

Stability notions

Stable signals: » " |2,P € £, < 0o = x €4,
=0 CL stability :=(®*, ®") € L,

Stable operators: A(x) € ¢,,Vx €, = AcL,

15
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System Level Synthesis (SLS) for NOC

Challenge:

...1.e., nonlinear functional equalities ®

NOC d T X

min wr.o Zl@t,w)] 1113880

s.t. x=F(x,u)+w, u=K(x) ’
(®*[F,K], ®"[F,K]) € L, .

achievability constraints

SLS

min
(\I;x’\I;u

[y
»
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wTO Zl wtO wt 0))

S. t.

v

F(\IJX, W) + ]| «Achievability»

If linear system... wang, Matni, Doyle, 2019;
ry = Axi_1 + Buy—q

(2] — A)W*(z2) = BY"(2)+ 1

Get rid of achievability?



=PrL  Main Result

u=K’'(x)+v(x)
_ — 2

I) Base controller: stabilize Il) Additional input: optimize performance

. Assumption: K’(-) is Input-to-State (IS) stabilizing
* i.e., leads to CL maps (w,v) = (x,u) in L,

= E.g.
i !m@ (_) K’ - Feedback linearization....

- Stabilizing NMPC...

Hovering controller

[y
~
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=PrL  Main Result

Il.  Parametrize v(x) as follows

I j * + i Controlle
v=M(w)=M(x—F(x,u)) §§§§’ | e, ) : . .
S — O AMO O w =

Result part 1 (sufficiency)

The CL maps (®“, ") achieved by the control scheme above are
stable for any M(:) € L,

Proof
= By hypothesis, disturbance sequence w € ¢,
= Since M(-) € L, ,then v = M(w) € ¢,
= By hypothesis, base controller K’(-) suchthat (w,v) € {, — (x,u) € ¢,

[y
o
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=PFL - Main Result
Result part 2 (necessity)

If K' € £,,, we can obtain any achievable CL maps (¥*,¥"“) c £, by
searching over the space of stable operators M < £, .

= —> Globally optimal CL maps by searching over M € L, !

Proof
= Select M = —K'(9*) + " Then, (K',¥*,¥") e L, — M e L,

So, the corresponding policy u = K’'(x) + M(x — F(x,u)) is within our search space @

What closed-loop maps do we achieve?
We prove by induction that (®*,®") = (¥*, ¥") | i.e., we achieve the desired CL maps.
Inductive Step: assume (@7, ®5g) = (Y50, Yjo) . Then

7:0
(I);'L+1 = K§+1(Fj+1:0 j:O) +1) - K§+1(Fj+1zo

Y Y
— x — x
_(I)j+1 _‘Ilj+1

Base Step: & = U§ = ... (the initial state is the initial state)

x

DD, = v, ()

[y
©
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=PFL  The Proposed Neur-SLS

= We establish a deep learning procedure to tackle NOC in_a dependable way

Empiric average Neu 5 Data
oS Zl ;l v, ) sampled disturbances and
Gradient-descent ot ft(«Tt on o) + wf xg:wg/ corresponding trajectories

over free parameter
P {(250) + MO (25 = Fi(25_ 1004 10)

Base controller <\_/ / e.g.

d “Recurrent Equilibrium Networks: Flexible Dynamic
E £p, \V/H E R Models with Guaranteed Stability and Robustness”, Max

Revay, Ruigang Wang, lan R. Manchester, TAC 2023

= Neur-SLS offers the following guarantees:
1. CL stability for any g

2. Representation power only limited by approximation of £,

N
-
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cPFL  The Corridor Problem

= Point-mass vehicles, nonlinear drag forces, force input

/ta rget

Lt LTt—1 Ty—1
=1, + T : .
[xt] [xt—ll [— |&e—1 || &1 + ut—l]

= Goal: CL stability on target, avoid collisions & obstacles
l() — ltarget(') + lcollisions(') + lobstacles(')

= Base controller K': linear spring at rest on target
» Overshoot, collisions.... But stabilizing

= Approach: train the corresponding Neur-SLS with standard GD!

N
N
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=PFL  The Corridor Problem
= Upon training over a dataset 500 different initial conditions...

p

1
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= ...robots learn the “corridor behavior” (robustly).
= CL stability guaranteed by design! Even with early stopping of training
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=F*L " Presentation Structure

2. Port-Hamiltonian DNNs for optimal distributed control with built-in
stability and non-vanishing gradients

“Distributed neural network control with dependability guarantees: a compositional port-

Hamiltonian approach’, Luca Furieri, Clara Galimberti, Muhammad Zakwan, and Giancarlo Ferrari Trecate,
L4DC 2022 (Spotlight Oral)
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Challenges of Using DNN Policies... at Large Scale

A. Closed-loop stability

B.

C.

= Neural SLS to parametrize all stabilizing NL policies

... Even in a distributed setup for networked control
= Sparse NN matrices? - Instability!

Vanishing gradients during optimization

=  Training stops prematurely because gradients are small...
= ... Despite being far from stationary point.

N
]
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distributed

A

non-vanishing
stability by-design gradients

A framework for solving challenges [A], [B], [C] simultaneously?

port-Hamiltonian systems

N
»
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EPFL  Port-Hamiltonian (pH) systems!

f oV (x(t)) A
y(f) = Gw = J skew-symmetric
\_ X

)
= V: Hamiltonian function (internal system eneré;&)

N
~
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n: (i.e. irrespectively ¢
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YN controllers

‘pteeing stability (A)

T A. van der Schaft and D. Jeltsema. "Port-Hamiltonian systems theory: An introductory overview." Foundations and Trends in Systems and

Control 1.2-3 (2014): 1/3-3/6.



=PL  Main Result

For a (nonlinear) pH system, consider a dynamic controller in pH form

/

/

where ®(&(1),0) is

/

. Clq{s.ed-looq

Gs . describe which local energy depends on
which local controller states.

Then, the control policy is distributed
according to Gz (paths of length 2).

-+ Theorem (B)

)le parameters

. Dlstrlbuted implementations (B) using ¢ (¢ Z D; (&, 0

( \ \

2(2) \
h Wm

\

h @ \‘75(“&5)\

@

o o

~

M
51,52,91

5 5
= Total energy: P = Z Vi(:) + Z D;(+)

= Closed-loop is pH: P(-) < 0 for any 6! (A)

eh Taecareor 00 00166 0924, €,. 69

& o0& o

N
-]

Luca Furieri



=PL  Main Result

For a (nonlinear) pH system, consider a dynamic controller in pH form

- 1, 2HE00) gy,

u(t) = 6, 2200

blue = trainable parameters

where ®(&(t), 0) is a Deep Neural Network energy function. Then

= Closed-loop stability (A) holds by design (for any 6)

N
= Distributed implementations (B) using ®(£(¢),6) = Z D, (€En.,0;)
i=1

= Non-vanishing gradients (C)

system state

pH systems preserve symplecticity: calling ¢ = [controller state

( aC(T) )7[J o} a¢(T) {J 0

s — |57
(T — 1) 0 J 0 J o¢(T =0 —

] we have

o¢(T —1)

N
©
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=PFL  Navigation task using pH-DNN distributed controllers

" : : ® ®
= Position swapping of 12 mobile robots
* Modelled as pH systems % ®
 Local controllers with ring communication topology ® o
. . * o ®
= Objective: /
Stable closed-loop system  collision avoidance ® ®
% ®
-
= Control cost L= (lg+Llca+lp)dt
Quadratic loss penalizing: . Collision Regu|arization loss
« Distance to target point & ||avoidance loss
* Non zero velocity 3 i
*  Input magnitude Penalizes parameter
variations across layers

distance(i, )

w
o
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=PFL  Numerical Experiments

= Closed-loop stability during training (A)
= Distributed controllers (ring topology) (B)
= Non-Vanishing gradients (C)
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DNN controllers = optimality in coordinated tasks...

Adapt the task to unmodeled environments?
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=F*L Presentation Structure

3. Regret minimization for safe adaptive control

“Safe Control with Minimal Regret”, Andrea Martin, Luca Furieri, Florian Dorfler, John Lygeros and
Giancarlo Ferrari-Trecate, L4DC 2022

w
w
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=P7L " Regret-optimal Control

- ‘ = Stochastic & time-varying disturbances
q
disturbance N = Exacerbated in networked control system

aerodyn.
coupling

|, control

policy ‘Ho optimal control: 2 optimal for Gaussian w(t) Q lack of robustness
Hoo optimal control: {7 optimal for worst-case w(t) Q overly conservative
ldea

Regret minimization for optimal adaptation to unmodeled disturbances

= Learn the best behavior in hindsight

= Literature on regret in control. no safety, suboptimal [agarwal et al., 2019], [Cohen et al., 2019], [Sabag et al., 2021]...

w
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Tt+1 — At(L't -+ Btut —+ Wt ]7

A[Ut = Ktil?t +Kt—1$t—l +...+K0x0](_

Regret Minimization for LQ Problems

The realized Linear Quadratic cost is written as
x'x+ulu=J(K,w)

i.e., a function of chosen policy and realized disturbances

= Hy and Hoo costs: minimize expected value or max of J(K,w) over w

= Only good if w is Gaussian (H5) or worst-case ( Ho)

Proposal: minimize cost with respect to the u* we would have chosen, had we known W

causal

min max |J(K,w) — minXx

non-causal K |w|2<1

Regret

s+ a'a

u(w)

w

5
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Learning from the Optimal Non-causal Policy

min max [J(K,w) — minx’x + ﬁTﬁ]I
K |w|2<1 a(w)

= Since x = Gu + Fw , best non-causal policy given by:

u(w)= (I +GG") 'G'Fw = ¥*w,

... Remark: despite being linear, also optimal among nonlinear non-causal policies!

= [Interpretation: optimal non-causal policy teaches what w is worth fighting against!

Realized
cost

wIFT(I } GGT)"'Fw

4

N -- e --=="" “Not worth fighting against”

—~_J(K,w)
<& “Worth fighting against’

v

Different realizations of W

“Goal: minimize the max. regret”

w

7
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=PFL Main Result: System Level Synthesis for Safe
Regret Minimization WTET(I + GGT)~'Fw

= The regret-minimization control problem |mI}n |V{f|1?%<l[=](Ka W) — f]flf(livf; e

min - A (<I>T<I> _ \P*T\f*>
S=[®, B,]

subject to ®, =GP, + F

P are cauggl U — B

is equivalent to

= Can easily add safety constraints z; € X, u; € U, Vt, Yw; € W

= ... also on the non-causal policy - define a more realistic benchmark!

l - Convex design of safe and regret-optimal control policies I

w
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=P*L Numerical Examples
0.7 0.2 0 i 02
A=p|03 07 -01|,B,=|2 03|,vte{0...T—1},
0 -0.2 0.8 1.5 0.5
W SHo SHoo SRy
N(0,1) 1 +21.14%  +10.89% = Ho wins for Gaussian w, and Hoo wins
Upsy | +63.42% >+100% ! for worst-case w, as expected
Uopy  +40.69% >+100% 1 = Regret only slightly worse
1 +67.74% >+100% 1
sin +58.12% >+100% 1
sawtooth | +46.27% >+100% 1 = Regret achieves better performance
step +66.49% >+100% 1 for all non-classical w realizations!
stairs +45.27% >+100% 1
worst +18.45% 1 +7.74%

W
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=P7L A New Paradigm in Control?

= Connections with Imitation Learning

[‘Follow the Clairvoyant: An Imitation Learning Approach to Optimal Control”, Andrea Martin, Luca Furieri, Florian Dorfler, John Lygeros, Giancarlo Ferrari-Trecate, IFAC 2023]
. T T
min max |4, »Q0z.y + 0y, wRéu,w]
™ [|w| 5 <1 ’ ’
0 = “Difference between causal and optimal non-causal trajectories”

= Unconstrained case: Regret Minimization = Imitation Learning
= Constrained case: Imitation Learning > Regret Minimization!

= Receding-horizon regret minimization (MPC)
[“On the Guarantees of Minimizing Regret in a Receding Horizon”, Andrea Martin, Luca Furieri, Florian Dorfler, John Lygeros, Giancarlo Ferrari-Trecate, under review]
= Main result: stability analysis using regret-based cost
= Benefit: outperforms standard 4, /H ., receding horizon performance
= Even when optimizing less frequently (i.e., every 10 time steps...)!

=

0
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=P7L A New Paradigm in Control?

Work in progress

= Optimal distributed control by minimizing “Spatial Regret”

What would have | done, had | seen further in space?”

Further in space communication
(ideal benchmark policy)/ — =

............ s = Outperform Hy/H against localized
disturbances in large-scale control systems

= Combine with “further in time” non-causal
benchmarks

i

Daniele Martinelli (SNSF PhD student)
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=P7L Qutlook: Towards Scalable Nonlinear Design

Neural SLS

Luca Furieri

+ Learning over ALL policies

Modular Design
(Retrofit?)

pH Neural Control Regret minimization

+ Non-vanishing gradients

+ Distributed guarantees + Adaptive performance
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Thank you for your attention!
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