Reliable Deep Neural Networks and Regret Minimization for Optimal Distributed Control

Luca Furieri

EPFL, SNSF Principal Investigator

TokyoTech, 26.07.2023

Optimal Control for Complex Dynamical Systems

EPFL

uca Furieri

Optimal Control for Complex Dynamical Systems

Challenges

I) Optimality in coordinated tasks

EPFL

Optimal Control for Complex Dynamical Systems

Luca Furieri

Challenges

I) Optimality in coordinated tasks

- Linear systems with quadratic costs?
 - NL policies needed! [Witsenhausen, 1969]
- ... NL objectives for NL systems
- Recent attempt: Deep Neural Nets (DNNs)

→ Stability? Safety?

Optimal Control for Complex Dynamical Systems

Luca Furieri

Challenges

I) Optimality in coordinated tasks

- Linear systems with quadratic costs?
 - NL policies needed! [Witsenhausen, 1969]
- ... NL objectives for NL systems
- Recent attempt: Deep Neural Nets (DNNs)

→ Stability? Safety?

Optimal Control for Complex Dynamical Systems

sensing Optimal control Optima

I) Optimality in coordinated tasks

- Linear systems with quadratic costs?
 - NL policies needed! [Witsenhausen, 1969]
- ... NL objectives for NL systems
- Recent attempt: Deep Neural Nets (DNNs)

→ Stability? Safety?

II) Adaptation to unmodeled disturbances

- Most ODC approaches so far...
 - Well-modeled disturbances only
 - Safety at the cost of performance

→ Regret Minimization to *safely* go beyond?

Presentation Structure

- Learning over all and only stabilizing policies for nonlinear optimal control using DNNs
- 2. Port-Hamiltonian DNNs for optimal distributed control with built-in stability and non-vanishing gradients
- 3. Regret minimization for safe adaptive control

"Neural System Level Synthesis: Learning over all and only stabilizing policies for nonlinear systems", Luca Furieri, Clara Galimberti and Giancarlo Ferrari Trecate, CDC 2022

The Nonlinear Optimal Control (NOC) Problem

Challenges

- Nonlinearities: system dynamics $f(\cdot)$, loss function $l(\cdot)$, control policy $K(\cdot)$
 - (Tractable) optimization
 - Global Optimality
- Dependability: stability during the optimization

Our Contribution

System Level Synthesis (SLS) philosophy

EPFL Setup and Notation

General, non-Markovian, time-varying controlled systems

$$\begin{cases} x_t = f_t(x_{t-1:0}, u_{t-1:0}) + w_t \\ u_t = K_t(x_{t:0}) \end{cases} \xrightarrow{\mathbf{K}(\mathbf{x}) = (K_0(x_0), K_1(x_{1:0}), \ldots)} \begin{cases} \mathbf{x} = \mathbf{F}(\mathbf{x}, \mathbf{u}) + \mathbf{w} \\ \mathbf{u} = \mathbf{K}(\mathbf{x}) \end{cases}$$

Closed-loop (CL) maps induced by interconnection of F and K

- Stability notions
 - Stable signals: $\sum_{t=0}^{\infty} |x_t|^p \in \ell_p < \infty \implies \mathbf{x} \in \ell_p$

CL stability := $(\mathbf{\Phi^x}, \mathbf{\Phi^u}) \in \mathcal{L}_p$

Stable operators: $\mathbf{A}(\mathbf{x}) \in \ell_p, \forall \mathbf{x} \in \ell_p \implies \mathbf{A} \in \mathcal{L}_p$

System Level Synthesis (SLS) for NOC

NOC

$$\min_{\mathbf{K}(\cdot)} \mathbb{E}_{w_{T:0}} \left[\sum_{t=0}^{T} l(x_t, u_t) \right]$$
s. t. $\mathbf{x} = \mathbf{F}(\mathbf{x}, \mathbf{u}) + \mathbf{w}, \ \mathbf{u} = \mathbf{K}(\mathbf{x})$
 $(\mathbf{\Phi}^{\mathbf{x}}[\mathbf{F}, \mathbf{K}], \mathbf{\Phi}^{\mathbf{u}}[\mathbf{F}, \mathbf{K}]) \in \mathcal{L}_p$.

- Challenge: achievability constraints
 - ...i.e., nonlinear functional equalities 🕾

If linear system... [Wang, Matni, Doyle, 2019]
$$x_t = Ax_{t-1} + Bu_{t-1}$$

$$(zI-A)\mathbf{\Psi^x}(z) = B\mathbf{\Psi^u}(z) + I$$

Get rid of achievability?

Main Result

- **Assumption**: $\mathbf{K}'(\cdot)$ is Input-to-State (IS) stabilizing
 - i.e., leads to CL maps $(\mathbf{w},\mathbf{v}) o (\mathbf{x},\mathbf{u})$ in \mathcal{L}_p

E.g.

- Feedback linearization...
- Stabilizing NMPC...

EPFL Main Result

II. Parametrize **v(x)** as follows

Result part 1 (sufficiency)

The CL maps (Φ^x, Φ^u) achieved by the control scheme above are stable for any $\mathcal{M}(\cdot) \in \mathcal{L}_p$

Proof

- By hypothesis, disturbance sequence $\mathbf{w} \in \ell_p$
- Since $\mathcal{M}(\cdot) \in \mathcal{L}_p$, then $\mathbf{v} = \mathcal{M}(\mathbf{w}) \in \ell_p$
- ullet By hypothesis, base controller $\mathbf{K}'(\cdot)$ such that $(\mathbf{w},\mathbf{v})\in\ell_p\implies (\mathbf{x},\mathbf{u})\in\ell_p$

EPFL Main Result

Result part 2 (necessity)

If $\mathbf{K}' \in \mathcal{L}_p$, we can obtain any achievable CL maps $(\mathbf{\Psi^x}, \mathbf{\Psi^u}) \in \mathcal{L}_p$ by searching over the space of stable operators $\mathcal{M} \in \mathcal{L}_p$.

lacksquare Globally optimal CL maps by searching over $\mathcal{M} \in \mathcal{L}_p$!

Proof

- Select $\mathcal{M}=-\mathbf{K}'(\Psi^{\mathbf{x}})+\Psi^{\mathbf{u}}$. Then, $(\mathbf{K}',\Psi^{\mathbf{x}},\Psi^{\mathbf{u}})\in\mathcal{L}_{p}\implies\mathcal{M}\in\mathcal{L}_{p}$
- So, the corresponding policy $\mathbf{u} = \mathbf{K}'(\mathbf{x}) + \mathcal{M}(\mathbf{x} \mathbf{F}(\mathbf{x}, \mathbf{u}))$ is within our search space

What closed-loop maps do we achieve?

- We prove by induction that $(\Phi^x, \Phi^u) = (\Psi^x, \Psi^u)$, i.e., we achieve the desired CL maps.
- Inductive Step: assume $(\Phi^x_{j:0}, \Phi^u_{j:0}) = (\Psi^x_{j:0}, \Psi^u_{j:0})$. Then

• Base Step: $\Phi_0^x = \Psi_0^x = I \dots$ (the initial state is the initial state)

The Proposed Neur-SLS

We establish a deep learning procedure to tackle NOC in a dependable way

- Neur-SLS offers the following guarantees:
 - 1. CL stability for any θ
 - 2. Representation power only limited by approximation of \mathcal{L}_p

EPFL The Corridor Problem

Point-mass vehicles, nonlinear drag forces, force input

$$\begin{bmatrix} x_t \\ \dot{x}_t \end{bmatrix} = \begin{bmatrix} x_{t-1} \\ \dot{x}_{t-1} \end{bmatrix} + T_s \begin{bmatrix} \dot{x}_{t-1} \\ -\|\dot{x}_{t-1}\|^2 \dot{x}_{t-1} + u_{t-1} \end{bmatrix}$$

• Goal: CL stability on target, avoid collisions & obstacles

$$l(\cdot) = l_{target}(\cdot) + l_{collisions}(\cdot) + l_{obstacles}(\cdot)$$

- Base controller K': linear spring at rest on target
 - Overshoot, collisions.... But stabilizing
- Approach: train the corresponding Neur-SLS with standard GD!

EPFL The Corridor Problem

Upon training over a dataset 500 different initial conditions...

- ...robots learn the "corridor behavior" (robustly).
- CL stability guaranteed by design! Even with early stopping of training

Luca Furieri

Presentation Structure

- 1. Learning over all and only stabilizing policies for nonlinear optimal control using DNNs
- Port-Hamiltonian DNNs for optimal distributed control with built-in stability and non-vanishing gradients
- 3. Regret minimization for safe adaptive control

"Distributed neural network control with dependability guarantees: a compositional port-Hamiltonian approach", Luca Furieri, Clara Galimberti, Muhammad Zakwan, and Giancarlo Ferrari Trecate, L4DC 2022 (Spotlight Oral)

Challenges of Using DNN Policies... at Large Scale

- A. Closed-loop stability
 - Neural SLS to parametrize all stabilizing NL policies
- B. ... Even in a distributed setup for networked control
 - Sparse NN matrices? → Instability!
- C. Vanishing gradients during optimization
 - Training stops prematurely because gradients are small...
 - Despite being far from stationary point.

EPFL Port-Hamiltonian (pH) systems¹

$$\dot{\mathbf{x}}(t) = (\mathbf{J} - \mathbf{R}) \frac{\partial V(\mathbf{x}(t))}{\partial \mathbf{x}} + \mathbf{G}^{\mathsf{T}} \mathbf{u}(t)$$
$$\mathbf{y}(t) = \mathbf{G} \frac{\partial V(\mathbf{x}(t))}{\partial \mathbf{x}}$$

■ **J** skew-symmetric

$$\mathbf{R} \succeq 0$$

V: Hamiltonian function (internal system energy)

EPFL Main Result

- Total energy: $P = \sum_{i=1}^{3} V_i(\cdot) + \sum_{i=1}^{3} \Phi_i(\cdot)$
- Closed-loop is pH: $\dot{P}(\cdot) \leq 0$ for any θ ! (A)
 - Take care of $\frac{\partial \Phi}{\partial \xi_1} = \frac{\partial \Phi_1(\xi_1, \xi_2)}{\partial \xi_1} + \frac{\partial \Phi_2(\xi_1, \xi_2, \xi_3)}{\partial \xi_1}$

Main Result

For a (nonlinear) pH system, consider a dynamic controller in pH form

$$\dot{\boldsymbol{\xi}} = \mathbf{J}_c \frac{\partial \Phi(\boldsymbol{\xi}(t), \boldsymbol{\theta})}{\partial \mathbf{x}} + \mathbf{G}_c^{\mathsf{T}} \mathbf{y}(t)$$

$$\mathbf{u}(t) = \mathbf{G}_c \frac{\partial \Phi(\boldsymbol{\xi}(t), \boldsymbol{\theta})}{\partial \mathbf{x}}$$
 blue = trainable parameters

where $\Phi(\boldsymbol{\xi}(t), \boldsymbol{\theta})$ is a Deep Neural Network energy function. Then

- Closed-loop stability (A) holds by design (for any θ)
- Distributed implementations (B) using $\Phi(\pmb{\xi}(t),\pmb{\theta}) = \sum \Phi_i(\pmb{\xi}_{\mathcal{N}_i},\pmb{\theta}_i)$
- Non-vanishing gradients (C)

pH systems preserve symplecticity: calling $\zeta = \begin{vmatrix} \text{system state} \\ \text{controller state} \end{vmatrix}$ we have

$$\left(\frac{\partial \zeta(T)}{\partial \zeta(T-t)}\right)^{\top} \begin{bmatrix} J & 0 \\ 0 & J_c \end{bmatrix} \frac{\partial \zeta(T)}{\partial \zeta(T-t)} = \begin{bmatrix} J & 0 \\ 0 & J_c \end{bmatrix} \implies \left\| \frac{\partial \zeta(T)}{\partial \zeta(T-t)} \right\| \ge 1$$

EPFL Navigation task using pH-DNN distributed controllers

- Position swapping of 12 mobile robots
 - Modelled as pH systems
 - Local controllers with ring communication topology
- Objective:

Stable closed-loop system + collision avoidance

• Control cost $\longrightarrow \mathcal{L} = \int_0^T (\ell_Q + \ell_{CA} + \ell_R) dt$

Quadratic loss penalizing:

- Distance to target point
- Non zero velocity
- Input magnitude

EPFL Numerical Experiments

- Closed-loop stability during training (A)
- Distributed controllers (ring topology) (B)
- Non-Vanishing gradients (C)

DNN controllers → optimality in coordinated tasks...

Adapt the task to unmodeled environments?

Presentation Structure

- 1. Learning over *all and only* stabilizing policies for nonlinear optimal control using DNNs
- 2. Port-Hamilton an DNNs for optimal distributed control with built-in stability and non-vanishing gradients
- 3. Regret minimization for safe adaptive control

"Safe Control with Minimal Regret", Andrea Martin, Luca Furieri, Florian Dorfler, John Lygeros and Giancarlo Ferrari-Trecate, L4DC 2022

EPFL Regret-optimal Control

- Stochastic & time-varying disturbances
- Exacerbated in networked control system

- \mathcal{H}_2 optimal control:
- optimal for Gaussian w(t)
- lack of robustness

- \mathcal{H}_{∞} optimal control:
- optimal for worst-case w(t)
- overly conservative

Idea

Regret minimization for optimal adaptation to unmodeled disturbances

- Learn the best behavior in hindsight
- Literature on regret in control: no safety, suboptimal [Agarwal et al., 2019], [Cohen et al., 2019], [Sabag et al., 2021]...

Regret Minimization for LQ Problems

The realized Linear Quadratic cost is written as

$$\mathbf{x}^T \mathbf{x} + \mathbf{u}^T \mathbf{u} = J(\mathbf{K}, \mathbf{w})$$

i.e., a function of chosen policy and realized disturbances

- \mathcal{H}_2 and \mathcal{H}_∞ costs: minimize expected value or max of $J(\mathbf{K},\mathbf{w})$ over \mathbf{w}
 - Only good if w is Gaussian (\mathcal{H}_2) or worst-case (\mathcal{H}_{∞})

Proposal: minimize cost with respect to the $\tilde{\mathbf{u}}^{\star}$ we would have chosen, had we known \mathbf{w}

Learning from the Optimal Non-causal Policy

$$\min_{\mathbf{K}} \max_{|\mathbf{w}|_2 \le 1} [J(\mathbf{K}, \mathbf{w}) - \min_{\tilde{\mathbf{u}}(\mathbf{w})} \tilde{\mathbf{x}}^T \tilde{\mathbf{x}} + \tilde{\mathbf{u}}^T \tilde{\mathbf{u}}]$$

• Since $\tilde{\mathbf{x}} = \mathbf{G}\tilde{\mathbf{u}} + \mathbf{F}\mathbf{w}$, best *non-causal* policy given by:

$$\tilde{\mathbf{u}}^{\star}(\mathbf{w}) = -(I + \mathbf{G}\mathbf{G}^{T})^{-1}\mathbf{G}^{T}\mathbf{F}\mathbf{w} = \mathbf{\Psi}^{\star}\mathbf{w}$$

- ... Remark: despite being linear, also optimal among nonlinear non-causal policies!
- Interpretation: optimal non-causal policy teaches what w is worth fighting against!

EPFL Main Result: System Level Synthesis for Safe $\mathbf{w}^T \mathbf{F}^T (I + \mathbf{G} \mathbf{G}^T)^{-1} \mathbf{F} \mathbf{w}$

Regret Minimization

The regret-minimization control problem

$$\min_{\mathbf{K}} \max_{|\mathbf{w}|_2 \le 1} [J(\mathbf{K}, \mathbf{w}) - \min_{\tilde{\mathbf{u}}(\mathbf{w})} \tilde{\mathbf{x}}^T \tilde{\mathbf{x}} + \tilde{\mathbf{u}}^T \tilde{\mathbf{u}}]$$

is equivalent to

$$\min_{\mathbf{\Phi} = [\mathbf{\Phi}_x \ \mathbf{\Phi}_u]} \lambda_{\max} \left(\mathbf{\Phi}^T \mathbf{\Phi} - \mathbf{\Psi}^{\star T} \mathbf{\Psi}^{\star} \right)$$
subject to $\mathbf{\Phi}_x = \mathbf{G} \mathbf{\Phi}_u + \mathbf{F}$

$$\mathbf{\Phi} \text{ are causal}$$

$$\tilde{\mathbf{u}}^{\star}(\mathbf{w}) = \begin{bmatrix} \tilde{u}_0^{\star} \\ \tilde{u}_1^{\star} \\ \tilde{u}_2^{\star} \end{bmatrix} = \mathbf{\Psi}^{\star}\mathbf{w} = \begin{bmatrix} \mathbf{w}_0 \\ \mathbf{w}_1 \\ \mathbf{w}_2 \end{bmatrix} \begin{bmatrix} w_0 \\ w_1 \\ w_2 \end{bmatrix}$$
$$\mathbf{u} = \mathbf{\Phi}\mathbf{w} = \begin{bmatrix} \mathbf{w}_0 \\ \mathbf{w}_1 \\ w_2 \end{bmatrix}$$

- Can easily add safety constraints $x_t \in \mathcal{X}, u_t \in \mathcal{U}, \forall t, \forall w_t \in \mathcal{W}$
 - ... also on the non-causal policy \rightarrow define a more realistic benchmark!
 - → Convex design of <u>safe</u> and <u>regret-optimal</u> control policies

Numerical Examples

$$A_t = \rho \begin{bmatrix} 0.7 & 0.2 & 0 \\ 0.3 & 0.7 & -0.1 \\ 0 & -0.2 & 0.8 \end{bmatrix}, B_t = \begin{bmatrix} 1 & 0.2 \\ 2 & 0.3 \\ 1.5 & 0.5 \end{bmatrix}, \forall t \in \{0 \dots T - 1\},$$

\mathbf{w}	$\mid \;\; \mathcal{SH}_2 \mid \;\;$	\mathcal{SH}_{∞}	\mathcal{SR}_{nc}
$\mathcal{N}(0,1)$	1	+21.14%	+ 10.89%
$\mathcal{U}_{[0.5,1]}$	+63.42%	>+100%	1
$\mathcal{U}_{[0,1]}$	+40.69%	>+100%	1
1	+67.74%	>+100%	1
\sin	+58.12%	>+100%	1
sawtooth	+46.27%	>+100%	1
step	+66.49%	>+100%	1
stairs	+45.27%	>+100%	1
worst	+18.45%	1	+7.74%

- \mathcal{H}_2 wins for Gaussian w, and \mathcal{H}_∞ wins for worst-case w, as expected
 - Regret only slightly worse
- Regret achieves better performance for all non-classical w realizations!

EPFL A New Paradigm in Control?

Connections with *Imitation Learning*

["Follow the Clairvoyant: An Imitation Learning Approach to Optimal Control", Andrea Martin, Luca Furieri, Florian Dorfler, John Lygeros, Giancarlo Ferrari-Trecate, IFAC 2023]

$$\min_{oldsymbol{\pi}} \; \max_{\|\mathbf{w}\|_2 \leq 1} \; \left[oldsymbol{\delta}_{x,\psi}^{ op} \mathbf{Q} oldsymbol{\delta}_{x,\psi} + oldsymbol{\delta}_{u,\psi}^{ op} \mathbf{R} oldsymbol{\delta}_{u,\psi}
ight]$$

 δ = "Difference between causal and optimal non-causal trajectories"

- Unconstrained case: Regret Minimization = Imitation Learning
- Constrained case: Imitation Learning > Regret Minimization!
- Receding-horizon regret minimization (MPC)

["On the Guarantees of Minimizing Regret in a Receding Horizon", Andrea Martin, Luca Furieri, Florian Dorfler, John Lygeros, Giancarlo Ferrari-Trecate, under review]

- Main result: stability analysis using regret-based cost
- Benefit: outperforms standard $\mathcal{H}_2/\mathcal{H}_\infty$ receding horizon performance
 - Even when optimizing less frequently (i.e., every 10 time steps...)!

A New Paradigm in Control?

Work in progress

Optimal distributed control by minimizing "Spatial Regret"

What would have I done, had I seen further in space?"

- Outperform $\mathcal{H}_2/\mathcal{H}_\infty$ against localized disturbances in large-scale control systems
- Combine with "further in time" non-causal benchmarks

Daniele Martinelli (SNSF PhD student)

Luca Furieri

EPFL

Outlook: Towards Scalable Nonlinear Design

Neural SLS

Thank you for your attention!

